

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6

1.6.1

Table	of	Contents
Introduction

How	to	read	this	book

The	cURL	project

How	it	started

The	name

What	does	curl	do?

Project	communication

Mailing	list	etiquette

Mailing	lists

Reporting	bugs

Releases

Security

Trust

The	development	team

Users	of	curl

Future

Open	Source

License

Copyright	and	Legal

Code	of	Conduct

Development

The	source	code

Code	layout

Handling	build	options

Code	style

Contributing

Reporting	vulnerabilities

Web	site

Network	and	protocols

Networking	simplified

2

1.6.2

1.6.3

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.7.7

1.7.8

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.8.7

1.8.8

1.8.9

1.8.10

1.8.10.1

1.8.10.2

1.8.10.3

1.8.11

1.8.12

1.8.13

1.8.14

1.8.15

1.8.16

1.8.17

1.8.18

1.9

Protocols

curl	protocols

Command	line	basics

Command	line	options

Options	depend	on	version

URLs

URL	globbing

List	options

Config	file

Passwords

Progress	meter

Using	curl

Verbose

Persistent	connections

Downloads

Uploads

Connections

Timeouts

.netrc

Proxies

Exit	status

FTP

Two	connections

Directory	traversing

Advanced	FTP	use

SCP	and	SFTP

IMAP	and	POP3

SMTP

TELNET

TLS

Debug

Copy	as	curl

curl	examples

How	to	HTTP	with	curl

3

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

1.9.8

1.9.9

1.9.10

1.9.11

1.9.12

1.9.13

1.9.14

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.4.1

1.11

1.11.1

1.11.2

1.11.2.1

1.11.2.2

1.11.2.3

1.11.3

1.11.4

1.11.4.1

1.11.4.2

1.11.4.3

1.11.4.4

1.11.4.5

Protocol	basics

Responses

Authentication

Ranges

HTTP	versions

HTTP	POST

Multipart	formposts

-d	vs	-F

Redirects

Modify	the	HTTP	request

HTTP	PUT

Cookies

HTTP/2

HTTP	cheat	sheet

Building	and	installing

Installing	prebuilt	binaries

Build	from	source

Dependencies

TLS	libraries

BoringSSL

libcurl	basics

Easy	handle

Drive	transfers

Drive	with	easy

Drive	with	multi

Drive	with	multi_socket

Connection	reuse

Callbacks

Write	data

Read	data

Progress	information

Header	data

Debug

4

1.11.4.6

1.11.4.7

1.11.4.8

1.11.4.9

1.11.4.10

1.11.4.11

1.11.4.12

1.11.4.13

1.11.5

1.11.6

1.11.7

1.11.8

1.11.9

1.11.10

1.11.11

1.11.12

1.11.13

1.11.14

1.11.15

1.11.16

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.12.5

1.12.6

1.12.7

1.13

1.14

1.15

sockopt

SSL	context

Seek	and	ioctl

Network	data	conversion

Opensocket	and	closesocket

SSH	key

RTSP	interleaved	data

FTP	matching

Cleanup

Proxies

Post	transfer	info

API	compatibility

--libcurl

Header	files

Global	initialization

multi-threading

curl	easy	options

CURLcode	return	codes

Verbose	operations

libcurl	examples

HTTP	with	libcurl

HTTP	responses

HTTP	requests

HTTP	versions

HTTP	ranges

Cookies	with	libcurl

Download

Upload

Bindings

libcurl	internals

Index

5

6

Introduction
Everything	curl	is	an	extensive	guide	to	everything	there	is	to	know	about	curl,	the	project,
the	command-line	tool,	the	library,	how	everything	started	and	how	it	came	to	be	what	it	is
today.	How	we	work	on	developing	it	further,	what	it	takes	to	use	it,	how	you	can	contribute
with	code	and	bug	reports	and	why	all	those	millions	of	existing	users	use	it.

This	book	is	meant	to	be	interesting	and	useful	to	both	casual	readers	and	the	somewhat
more	experienced	developers,	and	offers	something	for	you	all	to	pick	and	choose	from.
Don't	read	it	from	front	to	back.	Read	the	chapters	you	are	curious	about	and	go	back	and
forth	as	you	see	fit.

I	hope	to	run	this	book	project	as	I	do	all	other	projects	I	work	on:	in	the	open,	completely
free	to	download	and	read,	free	for	anyone	to	comment	on,	available	for	everyone	to
contribute	to	and	help	out	with.	Send	your	bug	reports,	pull	requests	or	critiques	to	me	and	I
will	improve	this	book	accordingly.

This	book	will	never	be	finished.	I	intend	to	keep	working	on	it	and	while	I	may	at	some	point
in	time	consider	it	fairly	complete	and	covering	most	aspects	of	the	project	(even	if	only	that
seems	like	an	insurmountable	goal),	the	curl	project	will	continue	to	move	so	there	will
always	be	things	to	update	in	the	book	as	well.

This	book	project	started	at	the	end	of	September	2015.

The	book	sites
http://bookcurl.haxx.se	is	the	home	of	this	book.	It	features	easy	accessible	links	to	read
the	book	online	in	a	web	version	or	download	a	copy	for	offline	reading	using	one	of	the
many	different	versions	offered,	including	PDF,	ePUB	and	MOBI.

https://ec.haxx.se	is	a	shortcut	to	the	HTML	version	of	the	book.

https://github.com/bagder/everything-curl	hosts	all	the	book	content.

The	author
With	the	hope	of	becoming	just	a	co-author	of	this	material,	I	am	Daniel	Stenberg.	I	founded
the	curl	project.	I'm	a	developer	at	heart,	for	fun	and	profit.	I	live	and	work	in	Stockholm,
Sweden.

Introduction

7

http://bookcurl.haxx.se
https://ec.haxx.se
https://github.com/bagder/everything-curl

All	there	is	to	know	about	me	can	be	found	on	my	web	site.

Help!
If	you	find	mistakes,	omissions,	errors	or	blatant	lies	in	this	document,	please	send	me	a
refreshed	version	of	the	affected	paragraph	and	I	will	make	amended	versions.	I	will	give
proper	credits	to	everyone	who	helps	out!	I	hope	to	make	this	document	better	over	time.

Preferably,	you	submit	errors	or	pull	requests	on	the	book's	github	page.

License
This	document	is	licensed	under	the	Creative	Commons	Attribution	4.0	license.

Introduction

8

https://daniel.haxx.se/
https://github.com/bagder/everything-curl/issues
https://github.com/bagder/everything-curl/pulls
http://creativecommons.org/licenses/by/4.0/

How	to	read	this	book
Here	is	an	overview	of	the	main	sections	of	this	book	and	what	they	cover.

1.	The	cURL	project
Project	things.	How	it	started,	how	we	work	and	how	often	releases	are	made.

2.	Open	Source
An	attempt	to	explain	what	open	source	is	and	how	it	works.

3.	The	source	code
A	description	of	the	curl	source	tree	and	how	the	layout	of	the	code	is	and	works.

4.	Network	and	protocols
What	exactly	are	networks	and	protocols?

5.	Command	line	basics
Start	at	the	beginning.	How	do	you	use	curl	from	a	command	line?

6.	Using	curl
Going	deeper,	looking	at	things	you	do	with	curl	the	command	line	tool.

7.	How	to	HTTP	with	curl
Digging	deeper	on	HTTP	specific	actions	to	do	with	the	curl	command	line	tool.

How	to	read	this	book

9

8.	Building	and	installing
Explaining	how	you	can	build	curl	and	libcurl	from	source	code.

9.	libcurl	basics
How	libcurl	works	and	how	you	use	it	when	writing	your	own	applications	with	it.

10.	HTTP	with	libcurl
A	closer	look	at	doing	HTTP	specific	things	with	libcurl.

11.	Bindings
A	casual	overview	of	some	of	the	most	popular	libcurl	bindings	and	how	similar	they	are	to
the	libcurl	C	API.

12.	libcurl	internals
Under	the	hood	it	works	like	this…

13.	Index
The	index.

How	to	read	this	book

10

The	cURL	project

A	funny	detail	about	Open	Source	projects	is	that	they	are	called	"projects",	as	if	they	were
somehow	limited	in	time	or	ever	can	get	done.	The	cURL	"project"	is	a	number	of	loosely-
coupled	individual	volunteers	working	on	writing	software	together	with	a	common	mission:
to	do	reliable	data	transfers	with	Internet	protocols.	And	giving	away	the	code	for	free	for
anyone	to	use.

The	cURL	project

11

How	it	started
Back	in	1996,	Daniel	Stenberg	was	writing	an	IRC	bot	in	his	spare	time,	an	automated
program	that	would	offer	services	for	the	participants	in	a	chatroom	dedicated	to	the	Amiga
computer	(#amiga	on	the	IRC	network	EFnet).	He	came	to	think	that	it	would	be	fun	to	get
some	updated	currency	rates	and	have	his	bot	offer	a	service	online	for	the	chat	room	users
to	get	current	exchange	rates,	to	ask	the	bot	"please	exchange	200	USD	into	SEK"	or
similar.

In	order	to	have	the	provided	exchange	rates	as	accurate	as	possible,	the	bot	would
download	the	rates	daily	from	a	web	site	that	was	hosting	them.	A	small	tool	to	download
data	over	HTTP	was	needed	for	this	task.	A	quick	look-around	at	the	time	had	Daniel	find	a
tiny	tool	named	httpget	(written	by	a	Brazilian	named	Rafael	Sagula).	It	did	the	job,	almost,
just	needed	a	few	little	a	tweaks	here	and	there	and	soon	Daniel	had	taken	over
maintenance	of	the	few	hundred	lines	of	code	it	was.

HttpGet	1.0	was	subsequently	released	on	April	8th	1997	with	brand	new	HTTP	proxy
support.

We	soon	found	and	fixed	support	for	getting	currencies	over	GOPHER.	Once	FTP	download
support	was	added,	the	name	of	the	project	was	changed	and	urlget	2.0	was	released	in
August	1997.	The	http-only	days	were	already	passed.

The	project	slowly	grew	bigger.	When	upload	capabilities	were	added	and	the	name	once
again	was	misleading,	a	second	name	change	was	made	and	on	March	20,	1998	curl	4	was
released.	(The	version	numbering	from	the	previous	names	was	kept.)

We	consider	March	20	1998	to	be	curl's	birthday.

How	it	started

12

https://daniel.haxx.se/

The	name
Naming	things	is	hard.

The	tool	was	about	uploading	and	downloading	data	specified	with	a	URL.	It	would	show	the
data	(by	default).	The	user	would	"see"	the	URL	perhaps	and	"see"	then	spelled	with	the
single	letter	'c'.	It	was	also	a	client-side	program,	a	URL	client.	So	'c'	for	Client	and	URL:
cURL.

Nothing	more	was	needed	so	the	name	was	selected	and	we	never	looked	back	again.

Later	on,	someone	suggested	that	curl	could	actually	be	a	clever	"recursive	acronym"
(where	the	first	letter	in	the	acronym	refers	back	to	the	same	word):	"Curl	URL	Request
Library"

While	that	is	awesome,	it	was	actually	not	the	original	thought.	We	sort	of	wish	we	were	that
clever	though…

There	are	and	were	other	projects	using	the	name	curl	in	various	ways,	but	we	were	not
aware	of	them	by	the	time	our	curl	came	to	be.

Confusions	and	mixups

Soon	after	curl	was	first	created	another	"curl"	appeared	that	makes	a	programming
language.	That	curl	still	exists.

Several	libcurl	bindings	for	various	programming	languages	use	the	term	"curl"	or	"CURL"	in
part	or	completely	to	describe	their	bindings,	so	sometimes	you	will	find	users	talking	about
curl	but	targeting	neither	the	command-line	tool	nor	the	library	that	is	made	by	this	project.

As	a	verb

'to	curl	something'	is	sometimes	used	as	a	reference	to	use	a	non-browser	tool	to	download
a	file	or	resource	from	a	URL.

The	name

13

http://www.curl.com

What	does	curl	do?
cURL	is	a	project	and	its	primary	purpose	and	focus	is	to	make	two	products:

curl,	the	command-line	tool

libcurl	the	transfer	library	with	a	C	API

Both	the	tool	and	the	library	do	Internet	transfers	for	resources	specified	as	URLs	using
Internet	protocols.

Everything	and	anything	that	is	related	to	Internet	protocol	transfers	can	be	considered	curl's
business.	Things	that	are	not	related	to	that	should	be	avoided	and	be	left	for	other	projects
and	products.

It	could	be	important	to	also	consider	that	curl	and	libcurl	try	to	avoid	handling	the	actual
data	that	is	transferred.	It	has,	for	example,	no	knowledge	about	HTML	or	anything	else	of
the	content	that	is	popular	to	transfer	over	HTTP,	but	it	knows	all	about	how	to	transfer	such
data	over	HTTP.

Both	products	are	frequently	used	not	only	to	drive	thousands	or	millions	of	scripts	and
applications	for	an	Internet	connected	world,	but	they	are	also	widely	used	for	server	testing,
protocol	fiddling	and	trying	out	new	things.

The	library	is	used	in	every	imaginable	sort	of	embedded	device	where	Internet	transfers	are
needed:	car	infotainment,	televisions,	Blu-Ray	players,	set-top	boxes,	printers,	routers,
game	systems,	etc.

Command	line	tool

Running	curl	from	the	command	line	was	natural	and	Daniel	never	considered	anything	else
than	that	it	would	output	data	on	stdout,	to	the	terminal,	by	default.	The	"everything	is	a	pipe"
mantra	of	standard	Unix	philosophy	was	something	Daniel	believed	in.	curl	is	like	'cat'	or	one
of	the	other	Unix	tools;	it	sends	data	to	stdout	to	make	it	easy	to	chain	together	with	other
tools	to	do	what	you	want.	That's	also	why	virtually	all	curl	options	that	allow	reading	from	a
file	or	writing	to	a	file,	also	have	the	ability	to	select	doing	it	to	stdout	or	from	stdin.

Following	that	style	of	what	Unix	command-line	tools	worked,	it	was	also	never	any	question
about	that	it	should	support	multiple	URLs	on	the	command	line.

The	command-line	tool	is	designed	to	work	perfectly	from	scripts	or	other	automatic	means.
It	doesn't	feature	any	other	GUI	or	UI	other	than	mere	text	in	and	text	out.

What	does	curl	do?

14

The	library

While	the	command-line	tool	came	first,	the	network	engine	was	ripped	out	and	converted
into	a	library	during	the	year	2000	and	the	concepts	we	still	have	today	were	introduced	with
libcurl	7.1	in	August	2000.	Since	then,	the	command	line	tool	has	been	a	thin	layer	of	logic	to
make	a	tool	around	the	library	that	does	all	the	heavy	lifting.

libcurl	is	designed	and	meant	to	be	available	for	anyone	who	wants	to	add	client-side	file
transfer	capabilities	to	their	software,	on	any	platform,	any	architecture	and	for	any	purpose.
libcurl	is	also	extremely	liberally	licensed	to	avoid	that	becoming	an	obstacle.

libcurl	is	written	in	traditional	and	conservative	C.	Where	other	languages	are	preferred,
people	have	created	libcurl	bindings	for	them.

What	does	curl	do?

15

Project	communication
cURL	is	an	Open	Source	project	consisting	of	voluntary	members	from	all	over	the	world,
living	and	working	in	a	large	number	of	the	world's	time	zones.	To	make	such	a	setup
actually	work,	communication	and	openness	is	key.	We	keep	all	communication	public	and
we	use	open	communication	channels.	Most	discussions	are	held	on	mailing	lists,	we	use
bug	trackers	where	all	issues	are	discussed	and	handled	with	full	insight	for	everyone	who
cares	to	look.

It	is	important	to	realize	that	we	are	all	jointly	taking	care	of	the	project,	we	fix	problems	and
we	add	features.	Sometimes	a	regular	contributor	grows	bored	and	fades	away,	sometimes
a	new	eager	contributor	steps	out	from	the	shadows	and	starts	helping	out	more.	To	keep
this	ship	going	forward	as	well	as	possible,	it	is	important	that	we	maintain	open	discussions
and	that's	one	of	the	reasons	why	we	frown	upon	users	who	take	discussions	privately	or	try
to	e-mail	individual	team	members	about	development	issues,	questions,	debugging	or
whatever.

In	this	day	and	age,	mailing	lists	may	be	considered	sort	of	the	old	style	of	communication—
no	fancy	web	forums	or	similar.	Using	a	mailing	list	is	therefore	becoming	an	art	that	isn't
practised	everywhere	and	may	be	a	bit	strange	and	unusual	to	you.	But	fear	not.	It	is	just
about	sending	emails	to	an	address	that	then	sends	that	e-mail	out	to	all	the	subscribers.
Our	mailing	lists	have	at	most	a	few	thousand	subscribers.	If	you	are	mailing	for	the	first
time,	it	might	be	good	to	read	a	few	old	mails	first	to	get	to	learn	the	culture	and	what's
considered	good	practice.

The	mailing	lists	and	the	bug	tracker	have	changed	hosting	providers	a	few	times	and	there
are	reasons	to	suspect	it	might	happen	again	in	the	future.	It	is	just	the	kind	of	thing	that
happens	to	a	project	that	lives	for	a	long	time.

A	few	users	also	hang	out	on	IRC	in	the	#curl	channel	on	freenode.

Project	communication

16

Mailing	list	etiquette

Like	many	communities	and	subcultures,	we	have	developed	guidelines	and	rules	of	what
we	think	is	the	right	way	to	behave	and	how	to	communicate	on	the	mailing	lists.	The	curl
mailing	list	etiquette	follows	the	style	of	traditional	Open	Source	projects.

Do	not	mail	a	single	individual

Many	people	send	one	question	directly	to	one	person.	One	person	gets	many	mails,	and
there	is	only	one	person	who	can	give	you	a	reply.	The	question	may	be	something	that
other	people	also	want	to	ask.	These	other	people	have	no	way	to	read	the	reply	but	to	ask
the	one	person	the	question.	The	one	person	consequently	gets	overloaded	with	mail.

If	you	really	want	to	contact	an	individual	and	perhaps	pay	for	his	or	her	services,	by	all
means	go	ahead,	but	if	it's	just	another	curl	question,	take	it	to	a	suitable	list	instead.

Reply	or	new	mail

Please	do	not	reply	to	an	existing	message	as	a	shortcut	to	post	a	message	to	the	lists.

Many	mail	programs	and	web	archivers	use	information	within	mails	to	keep	them	together
as	"threads",	as	collections	of	posts	that	discuss	a	certain	subject.	If	you	don't	intend	to	reply
on	the	same	or	similar	subject,	don't	just	hit	reply	on	an	existing	mail	and	change	subject;
create	a	new	mail.

Reply	to	the	list

When	replying	to	a	message	from	the	list,	make	sure	that	you	do	"group	reply"	or	"reply	to
all",	and	not	just	reply	to	the	author	of	the	single	mail	you	reply	to.

We	are	actively	discouraging	replying	back	to	the	single	person	by	setting	the	Reply-To:	field
in	outgoing	mails	back	to	the	mailing	list	address,	making	it	harder	for	people	to	mail	the
author	only	by	mistake.

Use	a	sensible	subject

Please	use	a	subject	of	the	mail	that	makes	sense	and	that	is	related	to	the	contents	of	your
mail.	It	makes	it	a	lot	easier	to	find	your	mail	afterwards	and	it	makes	it	easier	to	track	mail
threads	and	topics.

Do	not	top-post

Mailing	list	etiquette

17

https://curl.haxx.se/mail/etiquette.html

If	you	reply	to	a	message,	don't	use	top-posting.	Top-posting	is	when	you	write	the	new	text
at	the	top	of	a	mail	and	you	insert	the	previous	quoted	mail	conversation	below.	It	forces
users	to	read	the	mail	in	a	backwards	order	to	properly	understand	it.

This	is	why	top	posting	is	so	bad:

A:	Because	it	messes	up	the	order	in	which	people	normally	read	text.

Q:	Why	is	top-posting	such	a	bad	thing?

A:	Top-posting.

Q:	What	is	the	most	annoying	thing	in	e-mail?

Apart	from	the	screwed-up	read	order	(especially	when	mixed	together	in	a	thread	when
someone	responds	using	the	mandated	bottom-posting	style),	it	also	makes	it	impossible	to
quote	only	parts	of	the	original	mail.

When	you	reply	to	a	mail	you	let	the	mail	client	insert	the	previous	mail	quoted.	Then	you	put
the	cursor	on	the	first	line	of	the	mail	and	you	move	down	through	the	mail,	deleting	all	parts
of	the	quotes	that	don't	add	context	for	your	comments.	When	you	want	to	add	a	comment
you	do	so,	inline,	right	after	the	quotes	that	relate	to	your	comment.	Then	you	continue
downwards	again.

When	most	of	the	quotes	have	been	removed	and	you	have	added	your	own	words,	you	are
done!

HTML	is	not	for	mails

Please	switch	off	those	HTML	encoded	messages.	You	can	mail	all	those	funny	mails	to
your	friends.	We	speak	plain	text	mails.

Quoting

Quote	as	little	as	possible.	Just	enough	to	provide	the	context	you	cannot	leave	out.	A
lengthy	description	can	be	found	here.

Digest

We	allow	subscribers	to	subscribe	to	the	"digest"	version	of	the	mailing	lists.	A	digest	is	a
collection	of	mails	lumped	together	in	one	single	mail.

Should	you	decide	to	reply	to	a	mail	sent	out	as	a	digest,	there	are	two	things	you	MUST
consider	if	you	really	really	cannot	subscribe	normally	instead:

Cut	off	all	mails	and	chatter	that	is	not	related	to	the	mail	you	want	to	reply	to.

Mailing	list	etiquette

18

https://www.netmeister.org/news/learn2quote.html

Change	the	subject	name	to	something	sensible	and	related	to	the	subject,	preferably	even
the	actual	subject	of	the	single	mail	you	wanted	to	reply	to.

Please	tell	us	how	you	solved	the	problem!

Many	people	mail	questions	to	the	list,	people	spend	some	of	their	time	and	make	an	effort
in	providing	good	answers	to	these	questions.

If	you	are	the	one	who	asks,	please	consider	responding	once	more	in	case	one	of	the	hints
was	what	solved	your	problems.	The	guys	who	write	answers	feel	good	to	know	that	they
provided	a	good	answer	and	that	you	fixed	the	problem.	Far	too	often,	the	person	who	asked
the	question	is	never	heard	of	again,	and	we	never	get	to	know	if	he/she	is	gone	because
the	problem	was	solved	or	perhaps	because	the	problem	was	unsolvable!

Getting	the	solution	posted	also	helps	other	users	that	experience	the	same	problem(s).
They	get	to	see	(possibly	in	the	web	archives)	that	the	suggested	fixes	actually	has	helped
at	least	one	person.

Mailing	list	etiquette

19

Mailing	lists
Some	of	the	most	important	mailing	lists	are…

curl-users

The	main	mailing	list	for	users	and	developers	of	the	curl	command-line	tool,	for	questions
and	help	around	curl	concepts,	command-line	options,	the	protocols	curl	can	speak	or	even
related	tools.	We	tend	to	move	development	issues	or	more	advanced	bug	fixes	discussions
over	to	curl-library	instead,	since	libcurl	is	the	engine	that	drives	most	of	curl.

See	https://cool.haxx.se/mailman/listinfo/curl-users

curl-library

The	main	development	list,	and	also	for	users	of	libcurl.	We	discuss	how	to	use	libcurl	in
applications	as	well	as	development	of	libcurl	itself.	You	will	find	lots	of	questions	on	libcurl
behavior,	debugging	and	documentation	issues.

See	https://cool.haxx.se/mailman/listinfo/curl-library

curl-announce

This	mailing	list	only	gets	announcements	about	new	releases	and	security	problems—
nothing	else.	This	one	is	for	those	who	want	a	more	casual	feed	of	information	from	the
project.	https://cool.haxx.se/mailman/listinfo/curl-announce

Mailing	lists

20

https://cool.haxx.se/mailman/listinfo/curl-users
https://cool.haxx.se/mailman/listinfo/curl-library
https://cool.haxx.se/mailman/listinfo/curl-announce

Reporting	bugs
The	development	team	does	a	lot	of	testing.	We	have	a	whole	test	suite	that	is	run
frequently	every	day	on	numerous	platforms	to	in	order	to	exercise	all	code	and	make	sure
everything	works	as	supposed.

Still,	there	are	times	when	things	aren't	working	the	way	they	should.	Then	we	appreciate
getting	those	problems	reported.

A	bug	is	a	problem

Any	problem	can	be	considered	a	bug.	A	weirdly	phrased	wording	in	the	manual	that
prevents	you	from	understanding	something	is	a	bug.	A	surprising	side	effect	of	combining
multiple	options	can	be	a	bug—or	perhaps	it	should	be	better	documented?	Perhaps	the
option	doesn't	do	at	all	what	you	expected	it	to?	That's	a	problem	and	we	should	fix	it!

Problems	must	be	known	to	get	fixed

This	may	sound	easy	and	uncomplicated	but	is	a	fundamental	truth	in	our	and	other
projects.	Just	because	it	is	an	old	project	and	have	thousands	of	users	doesn't	mean	that
the	development	team	knows	about	the	problem	you	just	fell	over.	Maybe	users	haven't	paid
enough	attention	to	details	like	you,	or	perhaps	it	just	never	triggered	for	anyone	else.

We	rely	on	users	experiencing	problems	to	report	them.	We	need	to	learn	the	problems	exist
so	that	we	can	fix	them.

Fixing	the	problems

Software	engineering	is,	to	a	very	large	degree,	about	fixing	problems.	To	fix	a	problem	a
developer	needs	to	understand	how	to	repeat	it	and	to	do	that	the	debugging	person	needs
to	be	told	what	set	of	circumstances	that	made	the	problem	trigger.

A	good	bug	report

A	good	report	explains	what	happened	and	what	you	thought	was	going	to	happen.	Tell	us
exactly	what	versions	of	the	different	components	you	used	and	take	us	step	by	step
through	what	you	do	to	get	the	problem.

Reporting	bugs

21

After	you	submit	a	bug	report,	you	can	expect	there	to	be	follow-up	questions	or	perhaps
requests	that	you	try	out	varies	things	and	tasks	in	order	for	the	developer	to	be	able	to
narrow	down	the	suspects	and	make	sure	your	problem	is	being	cornered	in	properly.

A	bug	report	that	is	submitted	but	is	abandoned	by	the	submitter	risks	getting	closed	if	the
developer	fails	to	understand	it,	fails	to	reproduce	it	or	faces	other	problems	when	working
on	it.	Don't	abandon	your	report!

Report	curl	bugs	in	the	curl	bug	tracker	on	github!

Testing
Testing	software	thoroughly	and	properly	is	a	lot	of	work.	Testing	software	that	runs	on
dozens	on	operating	systems	and	dozens	of	CPU	architectures,	with	server	implementations
with	their	owns	sets	of	bugs	and	interpretations	of	the	specs,	is	even	more	work.

The	curl	project	has	a	test	suite	that	iterates	over	all	existing	test	cases,	runs	the	test	and
verifies	that	the	outcome	is	the	correct	one	and	that	no	other	problem	happened,	like	a
memory	leak	or	something	fishy	in	the	protocol	layer.

The	test	suite	is	meant	to	be	possible	to	run	after	you	have	built	curl	yourself	and	there	are	a
fair	number	of	volunteers	who	also	help	out	by	running	the	test	suite	automatically	a	few
times	per	day	to	make	sure	the	latest	commits	get	a	run.	This	way,	we	hopefully	discover	the
worst	flaws	pretty	soon	after	they	were	introduced.

We	don't	test	everything	and	even	when	we	try	to	test	things	there	will	always	be	subtle
details	that	get	through	and	that	we,	sometimes	years	after	the	fact,	figure	out	were	wrong.

Due	to	the	nature	of	different	systems	and	funny	use	cases	on	the	Internet,	eventually	some
of	the	best	testing	is	done	by	users	when	they	run	the	code	to	perform	their	own	use	cases.

Another	limiting	factor	with	the	test	suite	is	that	the	test	setup	itself	is	less	portable	than	curl
and	libcurl	so	there	are	in	fact	platforms	where	curl	runs	fine	but	the	test	suite	cannot
execute	at	all.

Reporting	bugs

22

https://github.com/curl/curl/issues

Releases
A	release	in	the	curl	project	means	packaging	up	all	the	source	code	that	is	in	the	master
branch	of	the	code	repository,	signing	the	package,	tagging	the	point	in	time	in	the	code
repository,	and	then	putting	it	up	on	the	web	site	for	the	world	to	download.

It	is	one	single	source	code	archive	for	all	platforms	curl	can	run	on.	It	is	the	one	and	only
package	for	both	curl	and	libcurl.

We	never	ship	any	curl	or	libcurl	binaries	from	the	project.	All	the	packaged	binaries	that	are
provided	with	operating	systems	or	on	other	download	sites	are	done	by	gracious	volunteers
outside	of	the	project.

As	of	a	few	years	back,	we	make	an	effort	to	do	our	releases	on	an	eight	week	cycle	and
unless	some	really	serious	and	urgent	problem	shows	up	we	stick	to	this	schedule.	We
release	on	a	Wednesday,	and	then	again	a	Wednesday	eight	weeks	later	and	so	it
continues.	Non-stop.

For	every	release	we	tag	the	source	code	in	the	repository	with	"curl-release	version"	and
we	update	the	changelog.

We	had	done	160	curl	releases	by	November	2016,	and	for	all	the	ones	made	since	late
1999	there	are	lots	of	release	stats	available	in	our	curl	release	log.

Daily	snapshots
Every	single	change	to	the	source	code	is	committed	and	pushed	to	the	source	code
repository.	This	repository	is	hosted	on	github.com	and	is	using	git	these	days	(but	hasn't
always	been	this	way).	When	building	curl	off	the	repository,	there	are	a	few	things	you	need
to	generate	and	setup	that	sometimes	cause	people	some	problems	or	just	friction.	To	help
with	that,	we	provide	daily	snapshots.

The	daily	snapshots	are	generated	daily	(clever	naming,	right?)	as	if	a	release	had	been
made	at	that	point	in	time.	It	produces	a	package	of	all	sources	code	and	all	files	that	are
normally	part	of	a	release	and	puts	it	in	a	package	and	uploads	it	to	a	special	place
(https://curl.haxx.se/snapshots/)	to	allow	interested	people	to	get	the	very	latest	code	to	test,
to	experiment	or	whatever.

The	snapshots	are	only	kept	for	around	20	days	until	deleted.

Releases

23

https://curl.haxx.se/changes.html
https://curl.haxx.se/docs/releases.html
https://curl.haxx.se/snapshots/

Releases

24

Security
Security	is	a	primary	concern	for	us	in	the	curl	project.	We	take	it	seriously	and	we	work	hard
on	providing	secure	and	safe	implementations	of	all	protocols	and	related	code.	As	soon	as
we	get	knowledge	about	a	security	related	problem	or	just	a	suspected	problem,	we	deal
with	it	and	we	will	attempt	to	provide	a	fix	and	security	notice	no	later	than	in	the	next
pending	release.

We	use	a	responsible	disclosure	policy,	meaning	that	we	prefer	to	discuss	and	work	on
security	fixes	out	of	the	public	eye	and	we	alert	the	vendors	on	the	openwall.org	list	a	few
days	before	we	announce	the	problem	and	fix	to	the	world.	This,	in	an	attempt	to	shorten	the
time	span	the	bad	guys	can	take	advantage	of	a	problem	until	a	fixed	version	has	been
deployed.

Past	security	problems

During	the	years	we	have	had	our	fair	share	of	security	related	problems.	We	work	hard	on
documenting	every	problem	thoroughly	with	all	details	listed	and	clearly	stated	to	aid	users.
Users	of	curl	should	be	able	to	figure	out	what	problems	their	particular	curl	versions	and
use	cases	are	vulnerable	to.

To	help	with	this,	we	present	this	waterfall	chart	showing	how	all	vulnerabilities	affect	which
curl	versions	and	we	have	this	complete	list	of	all	known	security	problems	since	the	birth	of
this	project.

Security

25

https://curl.haxx.se/docs/security.html
https://curl.haxx.se/docs/vulnerabilities.html

Trust
For	a	software	to	conquer	the	world,	it	needs	to	be	trusted.	It	takes	trust	to	build	more	trust
and	it	can	all	be	broken	down	really	fast	if	the	foundation	is	proven	to	have	cracks.

In	the	curl	project	we	build	trust	for	our	users	in	a	few	different	ways:

1.	 We	are	completely	transparent	about	everything.	Every	decision,	every	discussion	as
well	as	every	line	of	code	are	always	public	and	done	in	the	open.

2.	 We	try	hard	to	write	reliable	code.	We	write	test	cases,	we	review	code,	we	document
best	practices	and	we	have	a	style	guide	that	helps	us	keep	code	consistent.

3.	 We	stick	to	promises	and	guarantees	as	much	as	possible.	We	don't	break	APIs	and	we
don't	abandon	support	for	old	systems.

4.	 Security	is	of	utmost	importance	and	we	take	every	reported	incident	very	seriously	and
realize	that	we	must	fix	all	known	problems	and	we	need	to	do	it	responsibly.	We	do	our
best	to	not	endanger	our	users.

5.	 We	act	like	adults.	We	can	be	silly	and	we	can	joke	around,	but	we	do	it	responsibly	and
we	follow	our	Code	of	Conduct.	Everyone	should	be	able	to	even	trust	us	to	behave.

Trust

26

The	development	team
Daniel	Stenberg	is	the	founder	and	self-proclaimed	leader	of	the	project.	Everybody	else	that
participates	or	contributes	in	the	project	has	thus	arrived	at	a	later	point	in	time.	Some
contributors	worked	for	a	while	and	then	left	again.	Most	contributors	hang	around	only	for	a
short	while	to	get	their	bug	fixed	or	feature	merged	or	similar.	Counting	all	contributors	we
know	the	names	of,	we	have	received	help	from	more	than	1400	individuals.

The	list	of	people	that	have	repeatedly	shown	up	in	discussions	and	commits	during	the	last
several	years	include	these	stellar	individuals:

Daniel	Stenberg
Steve	Holme
Jay	Satiro
Dan	Fandrich
Marc	Hörsken
Kamil	Dudka
Alessandro	Ghedini
Yang	Tse
Günter	Knauf
Tatsuhiro	Tsujikawa
Patrick	Monnerat
Nick	Zitzmann

The	development	team

27

Users	of	curl

We	used	to	say	that	there	are	a	billion	users	of	curl.	It	makes	a	good	line	to	say	but	in	reality
we,	of	course,	don't	have	any	numbers	that	exact.	We	just	estimate	and	guess	based	on
observations	and	trends.	It	also	depends	on	exactly	what	you	would	consider	"a	user"	to	be.
Let's	elaborate.

Open	Source

The	project	being	Open	Source	and	very	liberally	licensed	means	that	just	about	anyone	can
redistribute	curl	in	source	format	or	built	into	binary	form.

Counting	downloads

The	curl	command-line	tool	and	the	libcurl	library	are	available	for	download	for	most
operating	systems	via	the	curl	web	site,	they	are	provided	via	third	party	installers	to	a	bunch
and	and	they	come	installed	by	default	with	yet	more	operating	systems.	This	makes

Users	of	curl

28

counting	downloads	from	the	curl	web	site	completely	inappropriate	as	a	means	of
measurement.

Finding	users

So,	we	can't	count	downloads	and	anyone	may	redistribute	it	and	nobody	is	forced	to	tell	us
they	use	curl.	How	can	we	figure	out	the	numbers?	How	can	we	figure	out	the	users?	The
answer	is	that	we	really	can't	with	any	decent	level	of	accuracy.

Instead	we	rely	on	witness	reports,	circumstantial	evidence,	on	findings	on	the	Internet,	the
occasional	"about	box"	or	license	agreement	mentioning	curl	or	that	authors	ask	for	help	and
tell	us	about	their	use.

The	curl	license	says	users	need	to	repeat	it	somewhere,	like	in	the	documentation,	but
that's	not	easy	for	us	to	find	in	many	cases	and	it's	also	not	easy	for	us	to	do	anything	about
should	they	decide	not	to	follow	the	very	small	license	requirement.

Command-line	tool	users

The	command-line	tool	curl	is	widely	used	by	programmers	around	the	world	in	shell	and
batch	scripts,	to	debug	servers	and	to	test	out	things.	There's	no	doubt	it	is	used	by	millions
every	day.

Embedded	library

libcurl	is	what	makes	our	project	reach	the	really	large	volume	of	users.	The	ability	to	quickly
and	easily	get	client	side	file	transfer	abilities	into	your	application	is	desirable	for	a	lot	of
users,	and	then	libcurl's	great	portability	also	helps:	you	can	write	more	or	less	the	same
application	on	a	wide	variety	of	platforms	and	you	can	still	keep	using	libcurl	for	transfers.

libcurl	being	written	in	C	with	no	or	just	a	few	required	dependencies	also	help	to	get	it	used
in	embedded	systems.

libcurl	is	popularly	used	in	smartphone	operating	systems,	in	car	infotainment	setups,	in
television	sets,	in	set-top	boxes,	in	audio	and	video	equipment	such	as	Blu-Ray	players	and
higher-end	receivers.	It	is	often	used	in	home	routers	and	printers.

A	fair	number	of	best-selling	games	are	also	using	libcurl,	on	Windows	and	game	consoles.

In	web	site	backends

Users	of	curl

29

The	libcurl	binding	for	PHP	was	one	of,	if	not	the,	first	bindings	for	libcurl	to	really	catch	on
and	get	used	widely.	It	quickly	got	adopted	as	a	default	way	for	PHP	users	to	transfer	data
and	as	it	has	now	been	in	that	position	for	over	a	decade	and	PHP	has	turned	out	to	be	a
fairly	popular	technology	on	the	Internet	(recent	numbers	indicated	that	something	like	a
quarter	of	all	sites	on	the	Internet	uses	PHP).

A	few	really	high-demand	sites	are	using	PHP	and	are	using	libcurl	in	the	backend.
Facebook	and	Yahoo	are	two	such	sites.

Famous	users
Nothing	forces	users	to	tell	us	they	use	curl	or	libcurl	in	their	services	or	in	the	products.	We
usually	only	find	out	they	do	by	accident,	by	reading	about	dialogues,	documentation	and
license	agreements.	Of	course	some	companies	also	just	flat	out	tell	us.

We	collect	names	of	companies	and	products	on	our	web	site	of	users	that	use	the	project's
products	"in	commercial	environments".	We	do	this	mostly	just	to	show-off	to	other	big
brands	that	if	these	other	guys	can	build	products	that	depend	on	us,	maybe	you	can,	too?

The	list	of	companies	are	well	over	200	names,	but	extracting	some	of	the	larger	or	more
well-known	brands,	here's	a	pretty	good	list	that,	of	course,	is	only	a	small	selection:

Adobe,	Altera,	AOL,	Apple,	AT&T,	BBC,	Blackberry,	BMW,	Bosch,	Broadcom,	Chevrolet,
Cisco,	Comcast,	Facebook,	Google,	Hitachi,	Honeywell,	HP,	Huawei,	HTC,	IBM,	Intel,	LG,
Mazda,	Mercedes-Benz,	Motorola,	Netflix,	Nintendo,	Oracle,	Panasonic,	Philips,	Pioneer,
RBS,	Samsung,	SanDisk,	SAP,	SAS	Institute,	SEB,	Sharp,	Siemens,	Sony,	Spotify,	Sun,
Swisscom,	Tomtom,	Toshiba,	VMware,	Xilinx,	Yahoo,	Yamaha

Users	of	curl

30

Future

There's	no	slowdown	in	sight	in	curl's	future,	bugs	reported,	development	pace	or	how
Internet	protocols	are	being	developed	or	updated.

We	are	looking	forward	to	support	for	more	protocols,	support	for	more	features	within	the
already	supported	protocols,	and	more	and	better	APIs	for	libcurl	to	allow	users	to	do
transfers	even	better	and	faster.

The	project	casually	maintains	a	TODO	file	holding	a	bunch	of	ideas	that	we	could	work	on
in	the	future.	It	also	keeps	a	KNOWN_BUGS	document	with,	a	list	of	known	problems	we
would	like	to	fix.

There's	a	ROADMAP	document	that	describe	some	plans	for	the	short-term	that	some	of	the
active	developers	thought	they	would	work	on	next.	Of	course,	we	can	not	promise	that	we
will	always	follow	it	perfectly.

We	are	highly	dependent	on	developers	to	join	in	and	work	on	what	they	want	to	get	done,
be	it	bug	fixes	or	new	features.

Future

31

https://curl.haxx.se/docs/todo.html
https://curl.haxx.se/docs/knownbugs.html
https://curl.haxx.se/dev/roadmap.html

Future

32

Open	Source

What	is	Open	Source
Generally,	Open	Source	software	is	software	that	can	be	freely	accessed,	used,	changed,
and	shared	(in	modified	or	unmodified	form)	by	anyone.	Open	Source	software	is	typically
made	by	many	people,	and	distributed	under	licenses	that	comply	with	the	definition.

Free	Software	is	an	older	and	related	term	that	basically	says	the	same	thing	for	all	our
intents	and	purposes,	but	we	stick	to	the	term	Open	Source	in	this	document	for	simplicity.

Open	Source

33

License
curl	and	libcurl	are	distributed	under	an	Open	Source	license	known	as	a	MIT	license
derivative.	It	is	very	short,	simple	and	easy	to	grasp.	It	follows	here	in	full:

COPYRIGHT	AND	PERMISSION	NOTICE

Copyright	(c)	1996	-	2017,	Daniel	Stenberg,	<daniel@haxx.se>.

All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	for	any	purpose

with	or	without	fee	is	hereby	granted,	provided	that	the	above	copyright

notice	and	this	permission	notice	appear	in	all	copies.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR

IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,

FITNESS	FOR	A	PARTICULAR	PURPOSE	AND	NONINFRINGEMENT	OF	THIRD	PARTY	RIGHTS.	IN

NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,

DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR

OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE

OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

Except	as	contained	in	this	notice,	the	name	of	a	copyright	holder	shall	not

be	used	in	advertising	or	otherwise	to	promote	the	sale,	use	or	other	dealings

in	this	Software	without	prior	written	authorization	of	the	copyright	holder.

This	is	basically	legalese	that	says	you	are	allowed	to	change	the	code,	redistribute	the
code,	redistribute	binaries	built	from	the	code	and	build	proprietary	code	with	it,	without
anyone	requiring	you	to	give	any	changes	back	to	the	project—but	you	may	not	claim	that
you	wrote	it.

Early	on	in	the	project	we	iterated	over	a	few	different	other	licenses	before	we	settled	on
this.	We	started	out	GPL,	then	tried	MPL	and	landed	on	this	MIT	derivative.	We	will	never
change	the	license	again.

License

34

Copyright
Copyright	is	a	legal	right	granted	by	the	law	of	a	country	that	gives	the	creator	of	an	original
work	exclusive	rights	for	its	use	and	distribution.

The	copyright	owner(s)	can	agree	to	allow	others	to	use	their	work	by	licensing	it.	That's
what	we	do	in	the	curl	project.	The	copyright	is	the	foundation	on	which	the	licensing	works.

Daniel	Stenberg	is	the	owner	of	most	copyrights	in	the	curl	project.

Independent
A	lot	of	Open	Source	projects	are	run	within	umbrella	organizations.	Such	organizations
include	the	GNU	project,	the	Apache	Software	Foundation,	a	larger	company	that	funds	the
project	or	similar.	The	curl	project	is	not	part	of	any	such	larger	organization	but	is
completely	independent	and	free.

No	company	controls	curl's	destiny	and	the	curl	project	does	not	need	to	follow	any	umbrella
organization's	guidelines.

curl	is	not	a	formal	company,	organization	or	a	legal	entity	of	any	kind.	curl	is	just	an	informal
collection	of	humans,	distributed	across	the	globe,	who	work	together	on	a	software	project.

Legal
The	curl	project	obeys	national	laws	of	the	countries	in	which	it	works.	However,	it	is	a	highly
visible	international	project,	downloadable	and	usable	in	effectively	every	country	on	earth,
so	some	local	laws	could	be	broken	when	using	curl.	That's	just	the	nature	of	it	and	if
uncertain,	you	should	check	your	own	local	situation.

There	have	been	law	suits	involving	technology	that	curl	provides.	One	such	case	known	to
the	author	of	this	was	a	patent	case	in	the	US	that	insisted	they	had	the	rights	to	resumed
file	transfers.

As	a	generic	software	component	that	is	usable	everywhere	to	everyone,	there	are	times
when	libcurl—in	particular—is	used	in	nefarious	or	downright	malicious	ways.	Examples
include	being	used	in	virus	and	malware	software.	That	is	unfortunate	but	nothing	we	can
prevent.

Copyright	and	Legal

35

Copyright	and	Legal

36

Code	of	conduct
As	contributors	and	maintainers	of	this	project,	we	pledge	to	respect	all	people	who
contribute	through	reporting	issues,	posting	feature	requests,	updating	documentation,
submitting	pull	requests	or	patches,	and	other	activities.

We	are	committed	to	making	participation	in	this	project	a	harassment-free	experience	for
everyone,	regardless	of	level	of	experience,	gender,	gender	identity	and	expression,	sexual
orientation,	disability,	personal	appearance,	body	size,	race,	ethnicity,	age,	or	religion.

Examples	of	unacceptable	behavior	by	participants	include	the	use	of	sexual	language	or
imagery,	derogatory	comments	or	personal	attacks,	trolling,	public	or	private	harassment,
insults,	or	other	unprofessional	conduct.

Project	maintainers	have	the	right	and	responsibility	to	remove,	edit,	or	reject	comments,
commits,	code,	wiki	edits,	issues,	and	other	contributions	that	are	not	aligned	to	this	Code	of
Conduct.	Project	maintainers	who	do	not	follow	the	Code	of	Conduct	may	be	removed	from
the	project	team.

This	code	of	conduct	applies	both	within	project	spaces	and	in	public	spaces	when	an
individual	is	representing	the	project	or	its	community.

Instances	of	abusive,	harassing,	or	otherwise	unacceptable	behavior	may	be	reported	by
opening	an	issue	or	contacting	one	or	more	of	the	project	maintainers.

Code	of	Conduct

37

Development
We	encourage	everyone	to	participate	in	the	development	of	curl	and	libcurl.	We	appreciate
all	the	help	we	can	get	and	while	the	main	portion	of	this	project	is	source	code,	there	is	a	lot
more	than	just	coding	and	debugging	help	that	is	needed	and	useful.

We	develop	and	discuss	everything	in	the	open,	preferably	on	the	mailing	lists.

Source	code	on	github
The	source	code	to	curl	and	libcurl	have	also	been	provided	and	published	publicly	and	it
continues	to	be	uploaded	to	the	main	web	site	for	every	release.

Since	March	2010,	the	curl	source	code	repository	has	been	hosted	on	github.com.	By	being
up	to	date	with	the	changes	there,	you	can	follow	our	day	to	day	development	very	closely.

Development

38

https://curl.haxx.se/
https://github.com/

The	source	code
The	source	code	is,	of	course,	the	actual	engine	parts	of	this	project.	After	all,	it	is	a	software
project.

curl	and	libcurl	are	written	in	C.

Hosting	and	download
You	can	always	find	the	source	code	for	the	latest	curl	and	libcurl	release	on	the	official	curl
web	site.	From	there	you	can	also	find	alternative	mirrors	that	host	copies	and	there	are
checksums	and	digital	signatures	provided	to	help	you	verify	that	what	ends	up	on	your	local
system	when	you	download	these	files	are	the	same	bytes	in	the	same	order	as	were
originally	uploaded	there	by	the	curl	team.

If	you	instead	would	rather	work	directly	with	the	curl	source	code	off	our	source	code
repository,	you	find	all	details	in	the	curl	github	repository.

Clone	the	code

git	clone	https://github.com/curl/curl.git

This	will	get	the	latest	curl	code	downloaded	and	unpacked	in	a	directory	on	your	local
system.

The	source	code

39

https://curl.haxx.se/
https://github.com/curl/curl/

Code	layout
The	curl	source	code	tree	is	neither	large	nor	complicated.	A	key	thing	to	remember	is,
perhaps,	that	libcurl	is	the	library	and	that	library	is	the	biggest	component	of	the	curl
command-line	tool.

root

We	try	to	keep	the	number	of	files	in	the	source	tree	root	to	a	minimum.	You	will	see	a	slight
difference	in	files	if	you	check	a	release	archive	compared	to	what	is	stored	in	the	git
repository	as	several	files	are	generated	by	the	release	scripts.

Some	of	the	more	notable	ones	include:

	buildconf	:	used	to	build	configure	and	more	when	building	curl	from	source	out	of	the
git	repository.
	buildconf.bat	:	the	Windows	version	of	buildconf.	Run	this	after	having	checked	out
the	full	source	code	from	git.
	CHANGES	:	generated	at	release	and	put	into	the	release	archive.	It	contains	the	1000
latest	changes	to	the	source	repository.
	configure	:	a	generated	script	that	is	used	on	Unix-like	systems	to	generate	a	setup
when	building	curl.
	COPYING	:	the	license	detailing	the	rules	for	your	using	the	code.
	GIT-INFO	:	only	present	in	git	and	contains	information	about	how	to	build	curl	after
having	checked	out	the	code	from	git.
	maketgz	:	the	script	used	to	produce	release	archives	and	daily	snapshots
	README	:	a	short	summary	of	what	curl	and	libcurl	are.
	RELEASE-NOTES	:	contains	the	changes	done	for	the	latest	release;	when	found	in	git	it
contains	the	changes	done	since	the	previous	release	that	are	destined	to	end	up	in	the
coming	release.

lib

This	directory	contains	the	full	source	code	for	libcurl.	It	is	the	same	source	code	for	all
platforms—over	one	hundred	C	source	files	and	a	few	more	private	header	files.	The	header
files	used	when	building	applications	against	libcurl	are	not	stored	in	this	directory;	see
include/curl	for	those.

Code	layout

40

Depending	on	what	features	are	enabled	in	your	own	build	and	what	functions	your	platform
provides,	some	of	the	source	files	or	portions	of	the	source	files	may	contain	code	that	is	not
used	in	your	particular	build.

lib/vtls

The	VTLS	sub	section	within	libcurl	is	the	home	of	all	the	TLS	backends	libcurl	can	be	built
to	support.	The	"virtual"	TLS	internal	API	is	a	common	API	that	is	used	within	libcurl	to
access	TLS	and	crypto	functions	without	the	main	code	knowing	exactly	which	TLS	library
that	is	used.	This	allows	the	person	who	builds	libcurl	to	select	from	a	wide	variety	TLS
libraries	to	build	with.

We	also	maintain	a	SSL	comparison	table	on	the	web	site	to	aid	users.

OpenSSL:	the	(by	far)	most	popular	TLS	library.
BoringSSL:	an	OpenSSL	fork	maintained	by	Google.	It	will	make	libcurl	disable	a	few
features	due	to	lacking	some	functionality	in	the	library.
LibreSSL:	an	OpenSSL	fork	maintained	by	the	OpenBSD	team.
NSS:	a	full-blown	TLS	library	perhaps	most	known	for	being	used	by	the	Firefox	web
browser.	This	is	the	default	TLS	backend	for	curl	on	Fedora	and	Redhat	systems.
GnuTLS:	a	full-blown	TLS	library	used	by	default	by	the	Debian	packaged	curl.
mbedTLS:	(formerly	known	as	PolarSSL)	is	a	TLS	library	more	targeted	towards	the
embedded	market.
WolfSSL:	(formerly	known	as	cyaSSL)	is	a	TLS	library	more	targeted	towards	the
embedded	market.
axTLS:	a	minuscule	TLS	library	focused	on	a	requiring	a	small	footprint.
SChannel:	the	native	TLS	library	on	Windows.
SecureTransport:	the	native	TLS	library	on	Mac	OS	X.
GSKit:	the	native	TLS	library	on	OS/400.

src

This	directory	holds	the	source	code	for	the	curl	command-line	tool.	It	is	the	same	source
code	for	all	platforms	that	run	the	tool.

Most	of	what	the	command-line	tool	does	is	to	convert	given	command	line	options	into	the
corresponding	libcurl	options	or	set	of	options	and	then	makes	sure	to	issue	them	correctly
to	drive	the	network	transfer	according	to	the	user's	wishes.

This	code	uses	libcurl	just	as	any	other	application	would.

include/curl

Code	layout

41

https://curl.haxx.se/docs/ssl-compared.html

Here	are	the	public	header	files	that	are	provided	for	libcurl-using	applications.	Some	of
them	are	generated	at	configure	or	release	time	so	they	do	not	look	identical	in	the	git
repository	as	they	do	in	a	release	archive.

With	modern	libcurl,	all	an	application	is	expected	to	include	in	its	C	source	code	is		#include
<curl/curl.h>	

docs

The	main	documentation	location.	Text	files	in	this	directory	are	typically	plain	text	files.	We
have	slowly	started	to	move	towards	Markdown	format	so	a	few	(but	hopefully	growing
number	of)	files	use	the	.md	extension	to	signify	that.

Most	of	these	documents	are	also	shown	on	the	curl	web	site	automatically	converted	from
text	to	a	web	friendly	format/look.

	BINDINGS	:	lists	all	known	libcurl	language	bindings	and	where	to	find	them
	BUGS	:	how	to	report	bugs	and	where
	CODE_OF_CONDUCT.md	:	how	we	expect	people	to	behave	in	this	project
	CONTRIBUTE	:	what	to	think	about	when	contributing	to	the	project
	curl.1	:	the	curl	command-line	tool	man	page,	in	nroff	format
	curl-config.1	:	the	curl-config	man	page,	in	nroff	format
	FAQ	:	frequently	asked	questions	about	various	curl-related	subjects
	FEATURES	:	an	incomplete	list	of	curl	features
	HISTORY	:	describes	how	the	project	started	and	has	evolved	over	the	years
	HTTP2.md	:	how	to	use	HTTP/2	with	curl	and	libcurl
	HTTP-COOKIES	:	how	curl	supports	and	works	with	HTTP	cookies
	index.html	:	a	basic	HTML	page	as	a	documentation	index	page
	INSTALL	:	how	to	build	and	install	curl	and	libcurl	from	source
	INSTALL.cmake	:	how	to	build	curl	and	libcurl	with	CMake
	INSTALL.devcpp	:	how	to	build	curl	and	libcurl	with	devcpp
	INTERNALS	:	details	curl	and	libcurl	internal	structures
	KNOWN_BUGS	:	list	of	known	bugs	and	problems
	LICENSE-MIXING	:	describes	how	to	combine	different	third	party	modules	and	their
individual	licenses
	MAIL-ETIQUETTE	:	this	is	how	to	communicate	on	our	mailing	lists
	MANUAL	:	a	tutorial-like	guide	on	how	to	use	curl
	mk-ca-bundle.1	:	the	mk-ca-bundle	tool	man	page,	in	nroff	format
	README.cmake	:	CMake-specific	details
	README.netware	:	Netware-specific	details
	README.win32	:	win32-specific	details
	RELEASE-PROCEDURE	:	how	to	do	a	curl	and	libcurl	release

Code	layout

42

	RESOURCES	:	further	resources	for	further	reading	on	what,	why	and	how	curl	does	things
	ROADMAP.md	:	what	we	want	to	work	on	in	the	future
	SECURITY	:	how	we	work	on	security	vulnerabilities
	SSLCERTS	:	TLS	certificate	handling	documented
	SSL-PROBLEMS	:	common	SSL	problems	and	their	causes
	THANKS	:	thanks	to	this	extensive	list	of	friendly	people,	curl	exists	today!
	TheArtOfHttpScripting	:	a	tutorial	into	HTTP	scripting	with	curl
	TODO	:	things	we	or	you	can	work	on	implementing
	VERSIONS	:	how	the	version	numbering	of	libcurl	works

docs/libcurl

All	libcurl	functions	have	their	own	man	pages	in	individual	files	with	.3	extensions,	using
nroff	format,	in	this	directory.	The	are	also	a	few	other	files	that	are	described	below.

	ABI	

	index.html	

	libcurl.3	

	libcurl-easy.3	

	libcurl-errors.3	

	libcurl.m4	

	libcurl-multi.3	

	libcurl-share.3	

	libcurl-thread.3	

	libcurl-tutorial.3	

	symbols-in-versions	

docs/libcurl/opts

This	directory	contains	the	man	pages	for	the	individual	options	for	three	different	libcurl
functions.

	curl_easy_setopt()		options	start	with		CURLOPT_	,		curl_multi_setopt()		options	start	with
	CURLMOPT_		and		curl_easy_getinfo()		options	start	with		CURLINFO_	.

docs/examples

Contains	around	100	stand-alone	examples	that	are	meant	to	help	readers	understand	how
libcurl	can	be	used.

See	also	the	libcurl	examples	section	of	this	book.

Code	layout

43

scripts

Handy	scripts.

	contributors.sh	:	extracts	all	contributors	from	the	git	repository	since	a	given	hash/tag.
The	purpose	is	to	generate	a	list	for	the	RELEASE-NOTES	file	and	to	allow	manually
added	names	to	remain	in	there	even	on	updates.	The	script	uses	the	'THANKS-filter`
file	to	rewrite	some	names.
	contrithanks.sh	:	extracts	contributors	from	the	git	repository	since	a	given	hash/tag,
filters	out	all	the	names	that	are	already	mentioned	in		THANKS	,	and	then	outputs
	THANKS		to	stdout	with	the	list	of	new	contributors	appended	at	the	end;	it's	meant	to
allow	easier	updates	of	the	THANKS	document.	The	script	uses	the	'THANKS-filter`	file
to	rewrite	some	names.
	log2changes.pl	:	generates	the		CHANGES		file	for	releases,	as	used	by	the	release	script.
It	simply	converts	git	log	output.
	zsh.pl	:	helper	script	to	provide	curl	command-line	completions	to	users	of	the	zsh
shell.

Code	layout

44

Handling	different	build	options
The	curl	and	libcurl	source	code	have	been	carefully	written	to	build	and	run	on	virtually
every	computer	platform	in	existence.	This	can	only	be	done	through	hard	work	and	by
adhering	to	a	few	guidelines	(and,	of	course,	a	fair	amount	of	testing).

A	golden	rule	is	to	always	add	#ifdefs	that	checks	for	specific	features,	and	then	have	the
setup	scripts	(configure	or	CMake	or	hard-coded)	check	for	the	presence	of	said	features	in
a	user's	computer	setup	before	the	program	is	compiled	there.	Additionally	and	as	a	bonus,
thanks	to	this	way	of	writing	the	code,	some	features	can	be	explicitly	turned	off	even	if	they
are	present	in	the	system	and	could	be	used.	Examples	of	that	would	be	when	users	want
to,	for	example,	build	a	version	of	the	library	with	a	smaller	footprint	or	with	support	for
certain	protocols	disabled,	etc.

The	project	sometimes	uses	#ifdef	protection	around	entire	source	files	when,	for	example,	a
single	file	is	provided	for	a	specific	operating	system	or	perhaps	for	a	specific	feature	that
isn't	always	present.	This	is	to	make	it	possible	for	all	platforms	to	always	build	all	files—it
simplifies	the	build	scripts	and	makefiles	a	lot.	A	file	entirely	#ifdefed	out	hardly	adds
anything	to	the	build	time,	anyway.

Rather	than	sprinkling	the	code	with	#ifdefs,	to	the	extent	where	it	is	possible,	we	provide
functions	and	macros	that	make	the	code	look	and	work	the	same,	independent	of	present
features.	Some	of	those	are	then	empty	macros	for	the	builds	that	lack	the	features.

Both	TLS	handling	and	name	resolving	are	handled	with	an	internal	API	that	hides	the
specific	implementation	and	choice	of	3rd	party	software	library.	That	way,	most	of	the
internals	work	the	same	independent	of	which	TLS	library	or	name	resolving	system	libcurl	is
told	to	use.

Handling	build	options

45

Style	and	code	requirements
Source	code	that	has	a	common	style	is	easier	to	read	than	code	that	uses	different	styles	in
different	places.	It	helps	making	the	code	feel	like	one	continuous	code	base.	Easy-to-read
is	a	very	important	property	of	code	and	helps	make	it	easier	to	review	when	new	things	are
added	and	it	helps	debugging	code	when	developers	are	trying	to	figure	out	why	things	go
wrong.	A	unified	style	is	more	important	than	individual	contributors	having	their	own
personal	tastes	satisfied.

Our	C	code	has	a	few	style	rules.	Most	of	them	are	verified	and	upheld	by	the	lib/checksrc.pl
script.	Invoked	with		make	checksrc		or	even	by	default	by	the	build	system	when	built	after
	./configure	--enable-debug		has	been	used.

It	is	normally	not	a	problem	for	anyone	to	follow	the	guidelines	as	you	just	need	to	copy	the
style	already	used	in	the	source	code,	and	there	are	no	particularly	unusual	rules	in	our	set
of	rules.

We	also	work	hard	on	writing	code	that	is	warning-free	on	all	the	major	platforms	and	in
general	on	as	many	platforms	as	possible.	Code	that	obviously	will	cause	warnings	will	not
be	accepted	as-is.

Some	the	rules	that	you	won't	be	allowed	to	break	are:

Indentation

We	use	only	spaces	for	indentation,	never	TABs.	We	use	two	spaces	for	each	new	open
brace.

Comments

Since	we	write	C89	code,	//	aren't	allowed.	They	weren't	introduced	in	the	C	standard	until
C99.	We	use	only	/*	and	*/	comments:

/*	this	is	a	comment	*/

Long	lines

Source	code	in	curl	may	never	be	wider	than	80	columns.	There	are	two	reasons	for
maintaining	this	even	in	the	modern	era	of	very	large	and	high	resolution	screens:

Code	style

46

1.	 Narrower	columns	are	easier	to	read	than	very	wide	ones.	There's	a	reason
newspapers	have	used	columns	for	decades	or	centuries.

2.	 Narrower	columns	allow	developers	to	more	easily	view	multiple	pieces	of	code	next	to
each	other	in	different	windows.	I	often	have	two	or	three	source	code	windows	next	to
each	other	on	the	same	screen,	as	well	as	multiple	terminal	and	debugging	windows.

Open	brace	on	the	same	line

In	if/while/do/for	expressions,	we	write	the	open	brace	on	the	same	line	as	the	keyword	and
we	then	set	the	closing	brace	on	the	same	indentation	level	as	the	initial	keyword.	Like	this:

if(age	<	40)	{

		/*	clearly	a	youngster	*/

}

else	on	the	following	line

When	adding	an		else		clause	to	a	conditional	expression	using	braces,	we	add	it	on	a	new
line	after	the	closing	brace.	Like	this:

if(age	<	40)	{

		/*	clearly	a	youngster	*/

}

else	{

		/*	probably	intelligent	*/

}

No	space	before	parentheses

When	writing	expressions	using	if/while/do/for,	there	shall	be	no	space	between	the	keyword
and	the	open	parenthesis.	Like	this:

while(1)	{

		/*	loop	forever	*/

}

Code	style

47

Contributing
Contributing	means	helping	out.

When	you	contribute	anything	to	the	project—code,	documentation,	bug	fixes,	suggestions
or	just	good	advice—we	assume	you	do	this	with	permission	and	you	are	not	breaking	any
contracts	or	laws	by	providing	that	to	us.	If	you	don't	have	permission,	don't	contribute	it	to
us.

Contributing	to	a	project	like	curl	could	be	many	different	things.	While	source	code	is	the
stuff	that	is	needed	to	build	the	products,	we	are	also	depending	on	good	documentation,
testing	(both	test	code	and	test	infrastructure),	web	content,	user	support	and	more.

Send	your	changes	or	suggestions	to	the	team	and	by	working	together	we	can	fix
problems,	improve	functionality,	clarify	documentation,	add	features	or	make	anything	else
you	help	out	with	land	in	the	proper	place.	We	will	make	sure	improved	code	and	docs	get
merged	into	the	source	tree	properly	and	other	sorts	of	contributions	are	suitable	received.

Send	your	contributions	on	a	mailing	list,	file	an	issue	or	submit	a	pull	request.

Suggestions

Ideas	are	easy,	implementations	are	hard.	Yes,	we	do	appreciate	good	ideas	and
suggestions	of	what	to	do	and	how	to	do	it,	but	the	chances	that	the	ideas	actually	turn	into
real	features	grow	substantially	if	you	also	volunteer	to	participate	in	converting	the	idea	into
reality.

We	already	gather	ideas	in	the		TODO		document	and	we	are	generally	aware	of	the	current
trends	in	the	popular	networking	protocols	so	there	is	usually	no	need	to	remind	us	about
those.

What	to	add

The	best	approach	to	add	anything	to	curl	or	libcurl	is,	of	course,	to	first	bring	the	idea	and
suggestion	to	the	curl	project	team	members	and	then	discuss	with	them	if	the	idea	is
feasible	for	inclusion	and	then	how	an	implementation	is	best	done—and	done	in	the	best
possible	way	to	get	merged	into	the	source	code	repository,	assuming	that	is	what	you	want.

The	project	generally	approves	of	functions	that	improves	the	support	for	the	current
protocols,	especially	features	that	popular	clients	or	browsers	have	but	that	curl	still	lacks.

Contributing

48

Of	course,	you	can	also	add	contents	to	the	project	that	isn't	code,	like	documentation,
graphics	or	web	site	contents,	but	the	general	rules	apply	equally	to	that.

If	you	are	fixing	a	problem	you	have	or	a	problem	that	others	are	reporting,	we	will	be	thrilled
to	receive	your	fix	and	merge	it	as	soon	as	possible!

What	not	to	add

There	aren't	any	good	rules	to	say	what	features	you	can't	add	or	that	we	will	never	accept,
but	let	me	instead	try	to	mention	a	few	things	you	should	avoid	to	get	less	friction	and	to	be
successful,	faster:

Do	not	write	up	a	huge	patch	first	and	then	send	it	to	the	list	for	discussion.	Always	start
out	by	discussing	on	the	list,	and	send	your	initial	review	requests	early	to	get	feedback
on	your	design	and	approach.	It	saves	you	from	wasting	time	going	down	a	route	that
might	need	rewriting	in	the	end	anyway!

When	introducing	things	in	the	code,	you	need	to	follow	the	style	and	architecture	that
already	exists.	When	you	add	code	to	the	ordinary	transfer	code	path,	it	must,	for
example,	work	asynchronously	in	a	non-blocking	manner.	We	will	not	accept	new	code
that	introduces	blocking	behaviors—we	already	have	too	many	of	those	that	we	haven't
managed	to	remove	yet.

Quick	hacks	or	dirty	solutions	that	have	a	high	risk	of	not	working	on	platforms	you	don't
run	or	on	architectures	you	don't	know.	We	don't	care	if	you	are	in	a	hurry	or	that	it
works	for	you.	We	do	not	accept	high	risk	code	or	code	that	is	hard	to	read	or
understand.

Code	that	breaks	the	build.	Sure,	we	accept	that	we	sometimes	have	to	add	code	to
certain	areas	that	makes	the	new	functionality	perhaps	depend	on	a	specific	3rd	party
library	or	a	specific	operating	system	and	similar,	but	we	can	never	do	that	at	the
expense	of	all	other	systems.	We	don't	break	the	build,	and	we	make	sure	all	tests	keep
running	successfully.

git
Our	preferred	source	control	tool	is	git.

While	git	is	sometimes	not	the	easiest	tool	to	learn	and	master,	all	the	basic	steps	a	casual
developer	and	contributor	needs	to	know	are	very	straight-forward	and	do	not	take	much
time	or	effort	to	learn.

Contributing

49

https://git-scm.com/

This	book	will	not	help	you	learn	git.	All	software	developers	in	this	day	and	age	should	learn
git	anyway.

The	curl	git	tree	can	be	browsed	with	a	web	browser	on	our	github	page	at
https://github.com/curl/curl.

To	check	out	the	curl	source	code	from	git,	you	can	clone	it	like	this:

git	clone	https://github.com/curl/curl.git

Pull	request

A	very	popular	and	convenient	way	to	make	your	own	changes	and	contribute	them	back	to
the	project	is	by	doing	a	so-called	pull	request	on	github.

First,	you	create	your	own	version	of	the	source	tree,	called	a	fork,	on	the	github	web	site.
That	way	you	get	your	own	version	of	the	curl	git	tree	that	you	can	clone	to	a	local	copy.

You	edit	your	own	local	copy,	commit	the	changes,	push	them	to	the	git	repository	on	github
and	then	on	the	github	web	site	you	can	select	to	create	a	pull	request	based	on	your
changes	done	to	your	local	repository	clone	of	the	original	curl	repository.

We	recommend	doing	your	work	meant	for	a	pull	request	in	a	dedicated	separate	branch
and	not	in	master,	just	to	make	it	easier	for	you	to	update	a	pull	request,	like	after	review,	for
example,	or	if	you	realize	it	was	a	dead	end	and	you	decide	to	just	throw	it	away.

Make	a	patch	for	the	mailing	list

Even	if	you	opt	to	not	make	a	pull	request	but	prefer	the	old	fashioned	and	trusted	method	of
sending	a	patch	to	the	curl-library	mailing	list,	it	is	still	a	good	to	work	in	a	local	git	branch
and	commit	your	changes	there.

A	branch	makes	it	easy	to	edit	and	rebase	when	you	need	to	change	things	and	it	makes	it
easy	to	keep	syncing	to	the	master	branch	when	things	are	updated	upstream.

Once	your	commits	are	fine	enough	to	get	sent	to	the	mailing	list,	you	just	create	patches
with		git	format-patch		and	send	them	away.	Even	more	fancy	users	go	directly	to		git
send-email		and	have	git	send	the	e-mail	itself!

git	commit	style

When	you	commit	a	patch	to	git,	you	give	it	a	commit	message	that	describes	the	change
you	are	committing.	We	have	a	certain	style	in	the	project	that	we	ask	you	to	use:

Contributing

50

https://github.com/curl/curl

[area]:	[short	line	describing	the	main	effect]

[separate	the	above	single	line	from	the	rest	with	an	empty	line]

[full	description,	no	wider	than	72	columns	that	describes	as	much	as

possible	as	to	why	this	change	is	made,	and	possibly	what	things

it	fixes	and	everything	else	that	is	related]

[Bug:	link	to	source	of	the	report	or	more	related	discussion]

[Reported-by:	John	Doe—credit	the	reporter]

[whatever-else-by:	credit	all	helpers,	finders,	doers]

Don't	forget	to	use		git	commit	--author="Jane	Doe	<jane@example.com>"		if	you	commit
someone	else's	work,	and	make	sure	that	you	have	your	own	user	and	e-mail	setup
correctly	in	git	before	you	commit!

The	author	and	the	*-by:	lines	are,	of	course,	there	to	make	sure	we	give	the	proper	credit	in
the	project.	We	do	not	want	to	take	someone	else's	work	without	clearly	attributing	where	it
comes	from.	Giving	correct	credit	is	of	utmost	importance!

Who	decides	what	goes	in?

First,	it	might	not	be	obvious	to	everyone	but	there	is,	of	course,	only	a	limited	set	of	people
that	can	actually	merge	commits	into	the	actual	official	git	repository.	Let's	call	them	the	core
team.

Everyone	else	can	fork	off	their	own	curl	repository	to	which	they	can	commit	and	push
changes	and	host	them	online	and	build	their	own	curl	versions	from	and	so	on,	but	in	order
to	get	changes	into	the	official	repository	they	need	to	be	pushed	by	a	trusted	person.

The	core	team	is	a	small	set	of	curl	developers	who	have	been	around	for	a	several	years
and	that	have	shown	that	they	are	skilled	developers	and	that	they	fully	comprehend	the
values	and	the	style	of	development	we	do	in	this	project.	They	are	some	of	the	people	listed
in	the	The	development	team	section.

You	can	always	bring	a	discussion	to	the	mailing	list	and	motivation	why	you	think	your
changes	should	get	accepted,	or	perhaps	even	object	to	other	changes	that	are	getting	in
and	so	forth.	You	can	even	suggest	yourself	or	someone	else	to	be	given	"push	rights"	and
become	one	of	the	selected	few	in	that	team.

Daniel	remains	the	project	leader	and	while	it	is	very	rarely	needed,	he	has	the	final	say	in
debates	that	don't	seem	to	sway	in	either	direction	or	fail	to	reach	some	sort	of	consensus.

Contributing

51

Contributing

52

Reporting	vulnerabilities
All	known	and	public	curl	or	libcurl	related	vulnerabilities	are	listed	on	the	curl	web	site
security	page.

Security	vulnerabilities	should	not	be	entered	in	the	project's	public	bug	tracker	unless	the
necessary	configuration	is	in	place	to	limit	access	to	the	issue	to	only	the	reporter	and	the
project's	security	team.

Vulnerability	handling

The	typical	process	for	handling	a	new	security	vulnerability	is	as	follows.

No	information	should	be	made	public	about	a	vulnerability	until	it	is	formally	announced	at
the	end	of	this	process.	That	means,	for	example,	that	a	bug	tracker	entry	must	NOT	be
created	to	track	the	issue	since	that	will	make	the	issue	public	and	it	should	not	be
discussed	on	any	of	the	project's	public	mailing	lists.	Also	messages	associated	with	any
commits	should	not	make	any	reference	to	the	security	nature	of	the	commit	if	done	prior	to
the	public	announcement.

The	person	discovering	the	issue,	the	reporter,	reports	the	vulnerability	privately	to
	curl-security@haxx.se	.	That's	an	e-mail	alias	that	reaches	a	handful	of	selected	and
trusted	people.

Messages	that	do	not	relate	to	the	reporting	or	managing	of	an	undisclosed	security
vulnerability	in	curl	or	libcurl	are	ignored	and	no	further	action	is	required.

A	person	in	the	security	team	sends	an	e-mail	to	the	original	reporter	to	acknowledge
the	report.

The	security	team	investigates	the	report	and	either	rejects	it	or	accepts	it.

If	the	report	is	rejected,	the	team	writes	to	the	reporter	to	explain	why.

If	the	report	is	accepted,	the	team	writes	to	the	reporter	to	let	him/her	know	it	is
accepted	and	that	they	are	working	on	a	fix.

The	security	team	discusses	the	problem,	works	out	a	fix,	considers	the	impact	of	the
problem	and	suggests	a	release	schedule.	This	discussion	should	involve	the	reporter
as	much	as	possible.

Reporting	vulnerabilities

53

https://curl.haxx.se/docs/security.html

The	release	of	the	information	should	be	"as	soon	as	possible"	and	is	most	often
synced	with	an	upcoming	release	that	contains	the	fix.	If	the	reporter,	or	anyone	else,
thinks	the	next	planned	release	is	too	far	away	then	a	separate	earlier	release	for
security	reasons	should	be	considered.

Write	a	security	advisory	draft	about	the	problem	that	explains	what	the	problem	is,	its
impact,	which	versions	it	affects,	any	solutions	or	workarounds	and	when	the	fix	was
released,	making	sure	to	credit	all	contributors	properly.

Request	a	CVE	number	from	distros@openwall	when	also	informing	and	preparing
them	for	the	upcoming	public	security	vulnerability	announcement—attach	the	advisory
draft	for	information.	Note	that	'distros'	won't	accept	an	embargo	longer	than	19	days.

Update	the	"security	advisory"	with	the	CVE	number.

The	security	team	commits	the	fix	in	a	private	branch.	The	commit	message	should
ideally	contain	the	CVE	number.	This	fix	is	usually	also	distributed	to	the	'distros'	mailing
list	to	allow	them	to	use	the	fix	prior	to	the	public	announcement.

At	the	day	of	the	next	release,	the	private	branch	is	merged	into	the	master	branch	and
pushed.	Once	pushed,	the	information	is	accessible	to	the	public	and	the	actual	release
should	follow	suit	immediately	afterwards.

The	project	team	creates	a	release	that	includes	the	fix.

The	project	team	announces	the	release	and	the	vulnerability	to	the	world	in	the	same
manner	we	always	announce	releases—it	gets	sent	to	the	curl-announce,	curl-library
and	curl-users	mailing	lists.

The	security	web	page	on	the	web	site	should	get	the	new	vulnerability	mentioned.

curl-security@haxx.se

Who	is	on	this	list?	There	are	a	couple	of	criteria	you	must	meet,	and	then	we	might	ask	you
to	join	the	list	or	you	can	ask	to	join	it.	It	really	isn't	very	formal.	We	basically	only	require	that
you	have	a	long-term	presence	in	the	curl	project	and	you	have	shown	an	understanding	for
the	project	and	its	way	of	working.	You	must	have	been	around	for	a	good	while	and	you
should	have	no	plans	on	vanishing	in	the	near	future.

We	do	not	make	the	list	of	participants	public	mostly	because	it	tends	to	vary	somewhat	over
time	and	a	list	somewhere	will	only	risk	getting	outdated.

Reporting	vulnerabilities

54

http://oss-security.openwall.org/wiki/mailing-lists/distros

Web	site	source	code
Most	of	the	curl	web	site	is	also	available	in	a	public	git	repository,	although	separate	from
the	source	code	repository	since	it	generally	isn't	interesting	to	the	same	people	and	we	can
maintain	a	different	list	of	people	that	have	push	rights,	etc.

The	web	site	git	repository	is	available	on	github	at	this	URL:	https://github.com/curl/curl-
www	and	you	can	clone	a	copy	of	the	web	code	like	this:

git	clone	https://github.com/curl/curl-www.git

Building	the	web

The	web	site	is	an	old	custom-made	setup	that	mostly	builds	static	HTML	files	from	a	set	of
source	files.	The	sources	files	are	preprocessed	with	what	is	basically	a	souped-up	C
preprocessor	called	fcpp	and	a	set	of	perl	scripts.	The	man	pages	get	converted	to	HTML
with	roffit.	Make	sure	fcpp,	perl,	roffit,	make	and	curl	are	all	in	your	$PATH.

Once	you	have	cloned	the	git	repository	the	first	time,	invoke		sh	bootstrap.sh		once	to	get	a
symlink	and	some	some	initial	local	files	setup,	and	then	you	can	build	the	web	site	locally
by	invoking		make		in	the	source	root	tree.

Note	that	this	doesn't	make	you	a	complete	web	site	mirror,	as	some	scripts	and	files	are
only	available	on	the	real	actual	site,	but	should	give	you	enough	to	let	you	view	most	HTML
pages	locally.

Web	site

55

https://github.com/curl/curl-www
https://daniel.haxx.se/projects/fcpp/
https://daniel.haxx.se/projects/roffit/

Network	and	protocols
Before	diving	in	and	talking	about	how	to	use	curl	to	get	things	done,	let's	take	a	look	at	what
all	this	networking	is	and	how	it	works,	using	simplifications	and	some	minor	shortcuts	to
give	an	easy	overview.

The	basics	are	in	the	networking	simplified	chapter	that	tries	to	just	draw	a	simple	picture	of
what	networking	is	from	a	curl	perspective,	and	the	protocols	section	which	explains	what
exactly	a	"protocol"	is	and	how	that	works.

Network	and	protocols

56

Networking	simplified
Networking	means	communicating	between	two	endpoints	on	the	Internet.	The	Internet	is
just	a	bunch	of	interconnected	machines	(computers	really),	each	using	their	own	private
addresses	(called	IP	addresses).	The	addresses	each	machine	have	can	be	of	different
types	and	machines	can	even	have	temporary	addresses.	These	computers	are	often	called
hosts.

The	computer,	tablet	or	phone	you	sit	in	front	of	is	usually	called	"the	client"	and	the	machine
out	there	somewhere	that	you	want	to	exchange	data	with	is	called	"the	server".	The	main
difference	between	the	client	and	the	server	is	in	the	roles	they	play	here.	There's	nothing
that	prevents	the	roles	from	being	reversed	in	a	subsequent	operation.

Which	machine

When	you	want	to	initiate	a	transfer	to	one	of	the	machines	out	there	(a	server),	you	usually
don't	know	its	IP	addresses	but	instead	you	usually	know	its	name.	The	name	of	the
machine	you	will	talk	to	is	embedded	in	the	URL	that	you	work	with	when	you	use	curl.

You	might	use	a	URL	like	"http://example.com/index.html",	which	means	you	will	connect	to
and	communicate	the	host	named	example.com.

Host	name	resolving

Once	we	know	the	host	name,	we	need	to	figure	out	which	IP	addresses	that	host	has	so
that	we	can	contact	it.

Converting	the	name	to	an	IP	address	is	often	called	'name	resolving'.	The	name	is
"resolved"	to	a	set	of	addresses.	This	is	usually	done	by	a	"DNS	server",	DNS	being	like	a
big	lookup	table	that	can	convert	names	to	addresses—all	the	names	on	the	Internet,	really.
Your	computer	normally	already	knows	the	address	of	a	computer	that	runs	the	DNS	server
as	that	is	part	of	setting	up	the	network.

curl	will	therefore	ask	the	DNS	server:	"Hello,	please	give	me	all	the	addresses	for
example.com",	and	the	server	responds	with	a	list	of	them.	Or	in	the	case	you	spell	the
name	wrong,	it	can	answer	back	that	the	name	doesn't	exist.

Establish	a	connection

Networking	simplified

57

http://example.com/index.html

With	a	list	of	IP	addresses	for	the	host	curl	wants	to	contact,	curl	sends	out	a	"connect
request".	The	connection	curl	wants	to	establish	is	called	TCP	and	it	works	sort	of	like
connecting	an	invisible	string	between	two	computers.	Once	established,	it	can	be	used	to
send	a	stream	of	data	in	both	directions.

As	curl	gets	a	list	of	addresses	for	the	host,	it	will	actually	traverse	that	list	of	addresses
when	connecting	and	in	case	one	fails	it	will	try	to	connect	to	the	next	one	until	either	one
works	or	they	all	fail.

Connects	to	"port	numbers"

When	connecting	with	TCP	to	a	remote	server,	a	client	selects	which	port	number	to	do	that
on.	A	port	number	is	just	a	dedicated	place	for	a	particular	service,	which	allows	that	same
server	to	listen	to	other	services	on	other	port	numbers	at	the	same	time.

Most	common	protocols	have	default	port	numbers	that	clients	and	servers	use.	For
example,	when	using	the	"http://example.com/index.html"	URL,	that	URL	specifies	a	scheme
called	"http"	which	tells	the	client	that	it	should	try	TCP	port	number	80	on	the	server	by
default.	The	URL	can	optionally	provide	another,	custom,	port	number	but	if	nothing	special
is	specified,	it	will	use	the	default	port	for	the	scheme	used	in	the	URL.

TLS

After	the	TCP	connection	has	been	established,	many	transfers	will	require	that	both	sides
negotiate	a	better	security	level	before	continuing,	and	that	is	often	TLS;	Transport	Layer
Security.	If	that	is	used,	the	client	and	server	will	do	a	TLS	handshake	first	and	only	continue
further	if	that	succeeds.

Transfer	data

When	the	connecting	"string"	we	call	TCP	is	attached	to	the	remote	computer	(and	we	have
done	the	possible	additional	TLS	handshake),	there's	an	established	connection	between
the	two	machines	and	that	connection	can	then	be	used	to	exchange	data.	That
communication	is	done	using	a	"protocol",	as	discussed	in	the	following	chapter.

Networking	simplified

58

http://example.com/index.html

Protocol
The	language	used	to	ask	for	data	to	get	sent—in	either	direction—is	called	the	protocol.
The	protocol	describes	exactly	how	to	ask	the	server	for	data,	or	to	tell	the	server	that	there
is	data	coming.

Protocols	are	typically	defined	by	the	IETF	(Internet	Engineering	Task	Force),	which	hosts
RFC	documents	that	describe	exactly	how	each	protocol	works:	how	clients	and	servers	are
supposed	to	act	and	what	to	send	and	so	on.

What	protocols	does	curl	support?
curl	supports	protocols	that	allow	"data	transfers"	in	either	or	both	directions.	We	usually
also	restrict	ourselves	to	protocols	which	have	a	"URI	format"	described	in	an	RFC	or	at
least	is	somewhat	widely	used,	as	curl	works	primarily	with	URLs	(URIs	really)	as	the	input
key	that	specifies	the	transfer.

The	latest	curl	(as	of	this	writing)	supports	these	protocols:

DICT,	FILE,	FTP,	FTPS,	GOPHER,	HTTP,	HTTPS,	IMAP,	IMAPS,	LDAP,	LDAPS,	POP3,
POP3S,	RTMP,	RTSP,	SCP,	SFTP,	SMB,	SMBS,	SMTP,	SMTPS,	TELNET,	TFTP

To	complicate	matters	further,	the	protocols	often	exist	in	different	versions	or	flavors	as	well.

What	other	protocols	are	there?
The	world	is	full	of	protocols,	both	old	and	new.	Old	protocols	get	abandoned	and	dropped
and	new	ones	get	introduced.	There's	never	a	state	of	stability	but	the	situation	changes
from	day	to	day	and	year	to	year.	You	can	rest	assured	that	there	will	be	new	protocols
added	in	the	list	above	in	the	future	and	that	there	will	be	new	versions	of	the	protocols
already	listed.

There	are,	of	course,	already	other	protocols	in	existence	that	curl	doesn't	yet	support.	We
are	open	to	supporting	more	protocols	that	suit	the	general	curl	paradigms,	we	just	need
developers	to	write	the	necessary	code	adjustments	for	them.

How	are	protocols	developed?

Protocols

59

http://www.ietf.org

Both	new	versions	of	existing	protocols	and	entirely	new	protocols	are	usually	developed	by
persons	or	teams	that	feel	that	the	existing	ones	are	not	good	enough.	Something	about
them	makes	them	not	suitable	for	a	particular	use	case	or	perhaps	some	new	idea	has
popped	up	that	could	be	applied	to	improve	things.

Of	course,	nothing	prevents	anyone	from	developing	a	protocol	entirely	on	their	own	at	their
own	pleasure	in	their	own	backyard,	but	the	major	protocols	are	usually	brought	to	the	IETF
at	a	fairly	early	stage	where	they	are	then	discussed,	refined,	debated	and	polished	and	then
eventually,	hopefully,	turned	into	a	published	RFC	document.

Software	developers	then	read	the	RFC	specifications	and	deploy	their	code	in	the	world
based	on	their	interpretations	of	the	words	in	those	documents.	It	sometimes	turn	out	that
some	of	the	specifications	are	subject	to	vastly	different	interpretations	or	sometimes	the
engineers	are	just	lazy	and	ignore	sound	advice	in	the	specs	and	deploy	something	that
doesn't	adhere.	Writing	software	that	interoperates	with	other	implementations	of	the
specifications	can	therefore	end	up	being	hard	work.

How	much	do	protocols	change?
Like	software,	protocol	specifications	are	frequently	updated	and	new	protocol	versions	are
created.

Most	protocols	allow	some	level	of	extensibility	which	makes	new	extensions	show	up	over
time,	extensions	that	make	sense	to	support.

The	interpretation	of	a	protocol	sometimes	changes	even	if	the	spec	remains	the	same.

The	protocols	mentioned	in	this	chapter	are	all	"Application	Protocols",	which	means	they
are	transferred	over	more	lower	level	protocols,	like	TCP,	UDP	and	TLS.	They	are	also
themselves	protocols	that	change	over	time,	get	new	features	and	get	attacked	so	that	new
ways	of	handling	security,	etc.,	forces	curl	to	adapt	and	change.

About	adhering	to	standards	and	who's	right
Generally,	there	are	protocol	specs	that	tell	us	how	to	send	and	receive	data	for	specific
protocols.	The	protocol	specs	we	follow	are	RFCs	put	together	and	published	by	IETF.

Some	protocols	are	not	properly	documented	in	a	final	RFC,	like,	for	example,	SFTP	for
which	our	implementation	is	based	on	an	Internet-draft	that	isn't	even	the	last	available	one.

Protocols

60

Protocols	are,	however,	spoken	by	two	parties	and	like	in	any	given	conversation,	there	are
then	two	sides	of	understanding	something	or	interpreting	the	given	instructions	in	a	spec.
Also,	lots	of	network	software	is	written	without	the	authors	paying	very	close	attention	to	the
spec	so	they	end	up	taking	some	shortcuts,	or	perhaps	they	just	interpreted	the	text
differently.	Sometimes	even	mistakes	and	bugs	make	software	behave	in	ways	that	are	not
mandated	by	the	spec	and	sometimes	even	downright	forbidden	in	the	specs.

In	the	curl	project	we	use	the	published	specs	as	rules	on	how	to	act	until	we	learn	anything
else.	If	popular	alternative	implementations	act	differently	than	what	we	think	the	spec	says
and	that	alternative	behavior	is	what	works	widely	on	the	big	Internet,	then	chances	are	we
will	change	foot	and	instead	decide	to	act	like	those	others.	If	a	server	refuses	to	talk	with	us
when	we	think	we	follow	the	spec	but	works	fine	when	we	bend	the	rules	every	so	slightly,
then	we	probably	end	up	bending	them	exactly	that	way—if	we	can	still	work	successfully
with	other	implementations.

Ultimately,	it	is	a	personal	decision	and	up	for	discussion	in	every	case	where	we	think	a
spec	and	the	real	world	don't	align.

In	the	worst	cases	we	introduce	options	to	let	application	developers	and	curl	users	have	the
final	say	on	what	curl	should	do.	I	say	worst	because	it	is	often	really	tough	to	ask	users	to
make	these	decisions	as	it	usually	involves	very	tricky	details	and	weirdness	going	on	and	it
is	a	lot	to	ask	of	users.	We	should	always	do	our	very	best	to	avoid	pushing	such	protocol
decisions	to	users.

Protocols

61

The	protocols	curl	supports
curl	supports	about	22	protocols.	We	say	"about"	because	it	depends	on	how	you	count	and
what	you	consider	to	be	distinctly	different	protocols.

DICT
DICT	is	a	dictionary	network	protocol,	it	allows	clients	to	ask	dictionary	servers	about	a
meaning	or	explanation	for	words.	See	RFC	2229.	Dict	servers	and	clients	use	TCP	port
2628.

FILE
FILE	is	not	actually	a	"network"	protocol.	It	is	a	URL	scheme	that	allows	you	to	tell	curl	to	get
a	file	from	the	local	file	system	instead	of	getting	it	over	the	network	from	a	remote	server.
See	RFC	1738.

FTP
FTP	stands	for	File	Transfer	Protocol	and	is	an	old	(originates	in	the	early	1970s)	way	to
transfer	files	back	and	forth	between	a	client	and	a	server.	See	RFC	959.	It	has	been
extended	muchly	over	the	years.	FTP	servers	and	clients	use	TCP	port	21	plus	one	more
port,	though	the	second	one	is	usually	dynamicly	established	during	communication.

See	the	external	page	FTP	vs	HTTP	for	how	it	differs	to	HTTP.

FTPS
FTPS	stands	for	Secure	File	Transfer	Protocol.	It	follows	the	tradition	of	appending	an	'S'	to
the	protocol	name	to	signify	that	the	protocol	is	done	like	normal	FTP	but	with	an	added
SSL/TLS	security	layer.	See	RFC	4217.

This	protocol	is	very	problematic	to	use	through	firewalls	and	other	network	equipments.

GOPHER

curl	protocols

62

https://daniel.haxx.se/docs/ftp-vs-http.html

Designed	for	"distributing,	searching,	and	retrieving	documents	over	the	Internet",	Gopher	is
somewhat	of	the	grand	father	to	HTTP	as	HTTP	has	mostly	taken	over	completely	for	the
same	use	cases.	See	RFC	1436.	Gopher	servers	and	clients	use	TCP	port	70.

HTTP
The	Hypertext	Transfer	Protocol,	HTTP,	is	the	most	widely	used	protocol	for	transferring	data
on	the	web	and	over	the	Internet.	See	RFC	7230	for	HTTP/1.1	and	RFC	7540	for	HTTP/2,
the	successor.	HTTP	servers	and	clients	use	TCP	port	80.

HTTPS
Secure	HTTP	is	HTTP	done	over	an	SSL/TLS	connection.	See	RFC	2818.	HTTPS	servers
and	clients	use	TCP	port	443.

IMAP
The	Internet	Message	Access	Protocol,	IMAP,	is	a	protocol	for	accessing,	controlling	and
"reading"	email.	See	RFC	3501.	IMAP	servers	and	clients	use	TCP	port	143.

IMAPS
Secure	IMAP	is	IMAP	done	over	an	SSL/TLS	connection.	Such	connections	usually	start	out
as	a	"normal"	IMAP	connection	that	is	then	upgraded	to	IMAPS	using	the		STARTTLS	
command.

LDAP
The	Lightweight	Directory	Access	Protocol,	LDAP,	is	a	protocol	for	accessing	and
maintaining	distributed	directory	information.	Basically	a	database	lookup.	See	RFC	4511.
LDAP	servers	and	clients	use	TCP	port	389.

LDAPS
Secure	LDAP	is	LDAP	done	over	an	SSL/TLS	connection.

curl	protocols

63

POP3
The	Post	Office	Protocol	version	3	(POP3)	is	a	protocol	for	retrieving	email	from	a	server.
See	RFC	1939.	POP3	servers	and	clients	use	TCP	port	110.

POP3S
Secure	POP3	is	POP3	done	over	an	SSL/TLS	connection.	Such	connections	usually	start
out	as	a	"normal"	POP3	connection	that	is	then	upgraded	to	POP3S	using	the		STARTTLS	
command.

RTMP
The	Real-Time	Messaging	Protocol	(RTMP)	is	a	protocol	for	streaming	audio,	video	and
data.	RTMP	servers	and	clients	use	TCP	port	1935.

RTSP
The	Real	Time	Streaming	Protocol	(RTSP)	is	a	network	control	protocol	to	control	streaming
media	servers.	See	RFC	2326.	RTSP	servers	and	clients	use	TCP	and	UDP	port	554.

SCP
The	Secure	Copy	(SCP)	protocol	is	designed	to	copy	files	to	and	from	a	remote	SSH	server.
SCP	servers	and	clients	use	TCP	port	22.

SFTP
The	SSH	File	Transfer	Protocol	(SFTP)	that	provides	file	access,	file	transfer,	and	file
management	over	a	reliable	data	stream.	SFTP	servers	and	clients	use	TCP	port	22.

SMB
The	Server	Message	Block	(SMB)	protocol	is	also	known	as	CIFS.	It	is	a	an	application-
layer	network	protocol	mainly	used	for	providing	shared	access	to	files,	printers,	and	serial
ports	and	miscellaneous	communications	between	nodes	on	a	network.	SMB	servers	and

curl	protocols

64

clients	use	TCP	port	485.

SMTP
The	Simple	Mail	Transfer	Protocol	(SMTP)	is	a	protocol	for	email	transmission.	See	RFC
821.	SMTP	servers	and	clients	use	TCP	port	25.

SMTPS
Secure	SMTP	is	SMTP	done	over	an	SSL/TLS	connection.	Such	connections	usually	start
out	as	a	"normal"	SMTP	connection	that	is	then	upgraded	to	SMTPS	using	the		STARTTLS	
command.

TELNET
TELNET	is	an	application	layer	protocol	used	over	networks	to	provide	a	bidirectional
interactive	text-oriented	communication	facility	using	a	virtual	terminal	connection.	See	RFC
854.	TELNET	servers	and	clients	use	TCP	port	23.

TFTP
The	Trivial	File	Transfer	Protocol	(TFTP)	is	a	protocol	for	doing	simple	file	transfers	over
UDP	to	get	a	file	from	or	put	a	file	onto	a	remote	host.	TFTP	servers	and	clients	use	UDP
port	69.

curl	protocols

65

Command	line	basics
curl	started	out	as	a	command-line	tool	and	it	has	been	invoked	from	shell	prompts	and	from
within	scripts	by	thousands	of	users	over	the	years.	curl	has	established	itself	as	one	of
those	trusty	tools	that	is	there	for	you	to	help	you	get	your	work	done.

Binaries	and	different	platforms
The	command-line	tool	"curl"	is	a	binary	executable	file.	The	curl	project	does	not	by	itself
distribute	or	provide	binaries.	Binary	files	are	highly	system	specific	and	oftentimes	also
bound	to	specific	system	versions.

To	get	a	curl	for	your	platform	and	your	system,	you	need	to	get	a	curl	executable	from
somewhere.	Many	people	build	their	own	from	the	source	code	provided	by	the	curl	project,
lots	of	people	install	it	using	a	package	tool	for	their	operating	system	and	yet	another
portion	of	users	download	binary	install	packages	from	sources	they	trust.

No	matter	how	you	do	it,	make	sure	you	are	getting	your	version	from	a	trusted	source	and
that	you	verify	digital	signatures	or	the	authenticity	of	the	packages	in	other	ways.

Also,	remember	that	curl	is	often	built	to	use	third-party	libraries	to	perform	and	unless	curl	is
built	to	use	them	statically	you	must	also	have	those	third-party	libraries	installed;	the	exact
set	of	libraries	will	vary	depending	on	the	particular	build	you	get.

Command	lines,	quotes	and	aliases
There	are	many	different	command	lines,	shells	and	prompts	in	which	curl	can	be	used.
They	all	come	with	their	own	sets	of	limitations,	rules	and	guidelines	to	follow.	The	curl	tool	is
designed	to	work	with	any	of	them	without	causing	troubles	but	there	may	be	times	when
your	specific	command	line	system	doesn't	match	what	others	use	or	what	is	otherwise
documented.

One	way	that	command-line	systems	differ,	for	example,	is	how	you	can	put	quotes	around
arguments	such	as	to	embed	spaces	or	special	symbols.	In	most	Unix-like	shells	you	use
double	quotes	(")	and	single	quotes	(')	depending	if	you	want	to	allow	variable	expansions	or
not	within	the	quoted	string,	but	on	Windows	there's	no	support	for	the	single	quote	version.

Command	line	basics

66

In	some	environments,	like	PowerShell	on	Windows,	the	authors	of	the	command	line
system	decided	they	know	better	and	"help"	the	user	to	use	another	tool	instead	of	curl
when		curl		is	typed,	by	providing	an	alias	that	takes	precedence	when	a	command	line	is
executed.	In	order	to	use	curl	properly	with	PowerShell,	you	need	to	type	in	its	full	name
including	the	extension:	"curl.exe".

Different	command-line	environments	will	also	have	different	maximum	command	line
lengths	and	force	the	users	to	limit	how	large	amount	of	data	that	can	be	put	into	a	single
line.	curl	adapts	to	this	by	offering	a	way	to	provide	command-line	options	through	a	file—or
from	stdin—using	the	-K	option.

Garbage	in,	garbage	out
curl	has	very	little	will	of	its	own.	It	tries	to	please	you	and	your	wishes	to	a	very	large	extent.
It	also	means	that	it	will	try	to	play	with	what	you	give	it.	If	you	misspell	an	option,	it	might	do
something	unintended.	If	you	pass	in	a	slightly	illegal	URL,	chances	are	curl	will	still	deal
with	it	and	proceed.	It	means	that	you	can	pass	in	crazy	data	in	some	options	and	you	can
have	curl	pass	on	that	crazy	data	in	its	transfer	operation.

This	is	a	design	choice,	as	it	allows	you	to	really	tweak	how	curl	does	its	protocol
communications	and	you	can	have	curl	massage	your	server	implementations	in	the	most
creative	ways.

Command	line	basics

67

Command	line	options
When	telling	curl	to	do	something,	you	invoke	curl	with	zero,	one	or	several	command-line
options	to	accompany	the	URL	or	set	of	URLs	you	want	the	transfer	to	be	about.	curl
supports	over	two	hundred	different	options.

Short	options

Command	line	options	pass	on	information	to	curl	about	how	you	want	it	to	behave.	Like	you
can	ask	curl	to	switch	on	verbose	mode	with	the	-v	option:

curl	-v	http://example.com

-v	is	here	used	as	a	"short	option".	You	write	those	with	the	minus	symbol	and	a	single	letter
immediately	following	it.	Many	options	are	just	switches	that	switches	something	on	or
changes	something	between	two	known	states.	They	can	be	used	with	just	that	option
name.	You	can	then	also	combine	several	single-letter	options	after	the	minus.	To	ask	for
both	verbose	mode	and	that	curl	follows	HTTP	redirects:

curl	-vL	http://example.com

The	command-line	parser	in	curl	always	parses	the	entire	line	and	you	can	put	the	options
anywhere	you	like;	they	can	also	appear	after	the	URL:

curl	http://example.com	-Lv

Long	options

Single-letter	options	are	convenient	since	they	are	quick	to	write	and	use,	but	as	there	are
only	a	limited	number	of	letters	in	the	alphabet	and	there	are	many	things	to	control,	not	all
options	are	available	like	that.	Long	option	names	are	therefore	provided	for	those.	Also,	as
a	convenience	and	to	allow	scripts	to	become	more	readable,	most	short	options	have
longer	name	aliases.

Long	options	are	always	written	with	two	minuses	(or	dashes,	whichever	you	prefer	to	call
them)	and	then	the	name	and	you	can	only	write	one	option	name	per	double-minus.	Asking
for	verbose	mode	using	the	long	option	format	looks	like:

Command	line	options

68

curl	--verbose	http://example.com

and	asking	for	HTTP	redirects	as	well	using	the	long	format	looks	like:

curl	--verbose	--location	http://example.com

Arguments	to	options

Not	all	options	are	just	simple	boolean	flags	that	enable	or	disable	features.	For	some	of
them	you	need	to	pass	on	data,	like	perhaps	a	user	name	or	a	path	to	a	file.	You	do	this	by
writing	first	the	option	and	then	the	argument,	separated	with	a	space.	Like,	for	example,	if
you	want	to	send	an	arbitrary	string	of	data	in	an	HTTP	POST	to	a	server:

curl	-d	arbitrary	http://example.com

and	it	works	the	same	way	even	if	you	use	the	long	form	of	the	option:

curl	--data	arbitrary	http://example.com

When	you	use	the	short	options	with	arguments,	you	can,	in	fact,	also	write	the	data	without
the	space	separator:

curl	-darbitrary	http://example.com

Arguments	with	spaces

At	times	you	want	to	pass	on	an	argument	to	an	option,	and	that	argument	contains	one	or
more	spaces.	For	example	you	want	to	set	the	user-agent	field	curl	uses	to	be	exactly		I	am
your	father	,	including	those	three	spaces.	Then	you	need	to	put	quotes	around	the	string
when	you	pass	it	to	curl	on	the	command	line.	The	exact	quotes	to	use	varies	depending	on
your	shell/command	prompt,	but	generally	it	will	work	with	double	quotes	in	most	places:

curl	-A	"I	am	your	father"	http://example.com

Failing	to	use	quotes,	like	if	you	would	write	the	command	line	like	this:

curl	-A	I	am	your	father	http://example.com

Command	line	options

69

...	will	make	curl	only	use	'I'	as	a	user-agent	string,	and	the	following	strings,	'am',	your,	etc
will	instead	all	be	treated	as	separate	URLs	since	they	don't	start	with		-		to	indicate	that
they're	options	and	curl	only	ever	handles	options	and	URLs.

To	make	the	string	itself	contain	double	quotes,	which	is	common	when	you	for	example
want	to	send	a	string	of	JSON	to	the	server,	you	may	need	to	use	single	quotes	(except	on
Windows,	where	single	quotes	doesn't	work	the	same	way).	Send	the	JSON	string		{
"name":	"Darth"	}	:

curl	-d	'{	"name":	"Darth"	}'	http://example.com

Or	if	you	want	to	avoid	the	single	quote	thing,	you	may	prefer	to	send	the	data	to	curl	via	a
file,	which	then	doesn't	need	the	extra	quoting.	Assuming	we	call	the	file	'json'	that	contains
the	above	mentioned	data:

curl	-d	@json	http://example.com

Negative	options

For	options	that	switch	on	something,	there	is	also	a	way	to	switch	it	off.	You	then	use	the
long	form	of	the	option	with	an	initial	"no-"	prefix	before	the	name.	As	an	example,	to	switch
off	verbose	mode:

curl	--no-verbose	http://example.com

Command	line	options

70

Options	depend	on	version
	curl		was	first	typed	on	a	command	line	back	in	the	glorious	year	of	1998.	It	already	then
worked	on	the	specified	URL	and	none,	one	or	more	command-line	options	given	to	it.

Since	then	we	have	added	more	options.	We	add	options	as	we	go	along	and	almost	every
new	release	of	curl	has	one	or	a	few	new	options	that	allow	users	to	modify	certain	aspects
of	its	operation.

With	the	curl	project's	rather	speedy	release	chain	with	a	new	release	shipping	every	eight
weeks,	it	is	almost	inevitable	that	you	are	at	least	not	always	using	the	very	latest	released
version	of	curl.	Sometimes	you	may	even	use	a	curl	version	that	is	a	few	years	old.

All	command-line	options	described	in	this	book	were,	of	course,	added	to	curl	at	some	point
in	time,	and	only	a	very	small	portion	of	them	were	available	that	fine	spring	day	in	1998
when	curl	first	shipped.	You	may	have	reason	to	check	your	version	of	curl	and	crosscheck
with	the	curl	man	page	for	when	certain	options	were	added.	This	is	especially	important	if
you	want	to	take	a	curl	command	line	using	a	modern	curl	version	back	to	an	older	system
that	might	be	running	an	older	installation.

The	developers	of	curl	are	working	hard	to	not	change	existing	behavior	though.	Command
lines	written	to	use	curl	in	1998,	2003	or	2010	should	all	be	possible	to	run	unmodified	even
today.

Options	depend	on	version

71

URLs
curl	is	called	curl	because	a	substring	in	its	name	is	URL	(Uniform	Resource	Locator).	It
operates	on	URLs.	URL	is	the	name	we	casually	use	for	the	web	address	strings,	like	the
ones	we	usually	see	prefixed	with	http://	or	starting	with	www.

URL	is,	strictly	speaking,	the	former	name	for	these.	URI	(Uniform	Resource	Identifier)	is	the
more	modern	and	correct	name	for	them.	Their	syntax	is	defined	in	RFC	3986.

Where	curl	accepts	a	"URL"	as	input,	it	is	then	really	a	"URI".	Most	of	the	protocols	curl
understands	also	have	a	corresponding	URI	syntax	document	that	describes	how	that
particular	URI	format	works.

curl	assumes	that	you	give	it	a	valid	URL	and	it	only	does	limited	checks	of	the	format	in
order	to	extract	the	information	it	deems	necessary	to	perform	its	operation.	You	can,	for
example,	most	probably	pass	in	illegal	characters	in	the	URL	without	curl	noticing	or	caring
and	it	will	just	pass	them	on.

Scheme

URLs	start	with	the	"scheme",	which	is	the	official	name	for	the	"http://"	part.	That	tells	which
protocol	the	URL	uses.	The	scheme	must	be	a	known	one	that	this	version	of	curl	supports
or	it	will	show	an	error	message	and	stop.	Additionally,	the	scheme	must	neither	start	with
nor	contain	any	whitespace.

The	scheme	separator

The	scheme	identifier	is	separated	from	the	rest	of	the	URL	by	the	"://"	sequence.	That	is	a
colon	and	two	forward	slashes.	There	exists	URL	formats	with	only	one	slash,	but	curl
doesn't	support	any	of	them.	There	are	two	additional	notes	to	be	aware	of,	about	the
number	of	slashes:

curl	allow	some	illegal	syntax	and	try	to	correct	it	internally;	so	it	will	also	understand	and
accept	URLs	with	one	or	three	slashes,	even	though	they	are	in	fact	not	properly	formed
URLs.	curl	does	this	because	the	browsers	started	this	practice	so	it	has	lead	to	such	URLs
being	used	in	the	wild	every	now	and	then.

	file://		URLs	are	written	as		file://<hostname>/<path>		but	the	only	hostnames	that	are
okay	to	use	are		localhost	,		127.0.0.1		or	a	blank	(nothing	at	all):

URLs

72

https://www.ietf.org/rfc/rfc3986.txt

file://localhost/path/to/file

file://127.0.0.1/path/to/file

file:///path/to/file

Inserting	any	other	host	name	in	there	will	make	recent	versions	of	curl	to	return	an	error.

Pay	special	attention	to	the	third	example	above	(file:///path/to/file).	That	is	three
slashes	before	the	path.	That	is	again	an	area	with	common	mistakes	and	where	browsers
allow	users	to	use	the	wrong	syntax	so	as	a	special	exception,	curl	on	Windows	also	allows
this	incorrect	format:

file://X:/path/to/file

...	where	X	is	a	windows-style	drive	letter.

Without	scheme

As	a	convenience,	curl	also	allows	users	to	leave	out	the	scheme	part	from	URLs.	Then	it
guesses	which	protocol	to	use	based	on	the	first	part	of	the	host	name.	That	guessing	is
very	basic	as	it	just	checks	if	the	first	part	of	the	host	name	matches	one	of	a	set	of
protocols,	and	assumes	you	meant	to	use	that	protocol.	This	heuristic	is	based	on	the	fact
that	servers	traditionally	used	to	be	named	like	that.	The	protocols	that	are	detected	this	way
are	FTP,	DICT,	LDAP,	IMAP,	SMTP	and	POP3.	Any	other	host	name	in	a	scheme-less	URL
will	make	curl	default	to	HTTP.

You	can	modify	the	default	protocol	to	something	other	than	HTTP	with	the		--proto-default	
option.

Name	and	password

After	the	scheme,	there	can	be	a	possible	user	name	and	password	embedded.	The	use	of
this	syntax	is	usually	frowned	upon	these	days	since	you	easily	leak	this	information	in
scripts	or	otherwise.	For	example,	listing	the	directory	of	an	FTP	server	using	a	given	name
and	password:

curl	ftp://user:password@example.com/

The	presence	of	user	name	and	password	in	the	URL	is	completely	optional.	curl	also	allows
that	information	to	be	provide	with	normal	command-line	options,	outside	of	the	URL.

Host	name	or	address

URLs

73

The	host	name	part	of	the	URL	is,	of	course,	simply	a	name	that	can	be	resolved	to	an
numerical	IP	address,	or	the	numerical	address	itself.	When	specifying	a	numerical	address,
use	the	dotted	version	for	IPv4	addresses:

curl	http://127.0.0.1/

…and	for	IPv6	addresses	the	numerical	version	needs	to	be	within	square	brackets:

curl	http://[::1]/

When	a	host	name	is	used,	the	converting	of	the	name	to	an	IP	address	is	typically	done
using	the	system's	resolver	functions.	That	normally	lets	a	sysadmin	provide	local	name
lookups	in	the		/etc/hosts		file	(or	equivalent).

Port	number

Each	protocol	has	a	"default	port"	that	curl	will	use	for	it,	unless	a	specified	port	number	is
given.	The	optional	port	number	can	be	provided	within	the	URL	after	the	host	name	part,	as
a	colon	and	the	port	number	written	in	decimal.	For	example,	asking	for	an	HTTP	document
on	port	8080:

curl	http://example.com:8080/

With	the	name	specified	as	an	IPv4	address:

curl	http://127.0.0.1:8080/

With	the	name	given	as	an	IPv6	address:

curl	http://[fdea::1]:8080/

Path

Every	URL	contains	a	path.	If	there's	none	given,	"/"	is	implied.	The	path	is	sent	to	the
specified	server	to	identify	exactly	which	resource	that	is	requested	or	that	will	be	provided.

The	exact	use	of	the	path	is	protocol	dependent.	For	example,	getting	a	file	README	from
the	default	anonymous	user	from	an	FTP	server:

curl	ftp://ftp.example.com/README

URLs

74

For	the	protocols	that	have	a	directory	concept,	ending	the	URL	with	a	trailing	slash	means
that	it	is	a	directory	and	not	a	file.	Thus	asking	for	a	directory	list	from	an	FTP	server	is
implied	with	such	a	slash:

curl	ftp://ftp.example.com/tmp/

FTP	type

This	is	not	a	feature	that	is	widely	used.

URLs	that	identify	files	on	FTP	servers	have	a	special	feature	that	allows	you	to	also	tell	the
client	(curl	in	this	case)	which	file	type	the	resource	is.	This	is	because	FTP	is	a	little	special
and	can	change	mode	for	a	transfer	and	thus	handle	the	file	differently	than	if	it	would	use
another	mode.

You	tell	curl	that	the	FTP	resource	is	an	ASCII	type	by	appending	";type=A"	to	the	URL.
Getting	the	'foo'	file	from	example.com's	root	directory	using	ASCII	could	then	be	made	with:

curl	"ftp://example.com/foo;type=A"

And	while	curl	defaults	to	binary	transfers	for	FTP,	the	URL	format	allows	you	to	also	specify
the	binary	type	with	type=I:

curl	"ftp://example.com/foo;type=I"

Finally,	you	can	tell	curl	that	the	identified	resource	is	a	directory	if	the	type	you	pass	is	D:

curl	"ftp://example.com/foo;type=D"

…this	can	then	work	as	an	alternative	format,	instead	of	ending	the	path	with	a	trailing	slash
as	mentioned	above.

Fragment

URLs	offer	a	"fragment	part".	That's	usually	seen	as	a	hash	symbol	(#)	and	a	name	for	a
specific	name	within	a	web	page	in	browsers.	curl	supports	fragments	fine	when	a	URL	is
passed	to	it,	but	the	fragment	part	is	never	actually	sent	over	the	wire	so	it	doesn't	make	a
difference	to	curl's	operations	whether	it	is	present	or	not.

Browsers'	"address	bar"

URLs

75

It	is	important	to	realize	that	when	you	use	a	modern	web	browser,	the	"address	bar"	they
tend	to	feature	at	the	top	of	their	main	windows	are	not	using	"URLs"	or	even	"URIs".	They
are	in	fact	mostly	using	IRIs,	which	is	a	superset	of	URIs	to	allow	internationalization	like
non-Latin	symbols	and	more,	but	it	usually	goes	beyond	that,	too,	as	they	tend	to,	for
example,	handle	spaces	and	do	magic	things	on	percent	encoding	in	ways	none	of	these
mentioned	specifications	say	a	client	should	do.

The	address	bar	is	quite	simply	an	interface	for	humans	to	enter	and	see	URI-like	strings.

Sometimes	the	differences	between	what	you	see	in	a	browser's	address	bar	and	what	you
can	pass	in	to	curl	is	significant.

Many	options	and	URLs
As	mentioned	above,	curl	supports	hundreds	of	command-line	options	and	it	also	supports
an	unlimited	number	of	URLs.	If	your	shell	or	command-line	system	supports	it,	there's	really
no	limit	to	how	long	a	command	line	you	can	pass	to	curl.

curl	will	parse	the	entire	command	line	first,	apply	the	wishes	from	the	command-line	options
used,	and	then	go	over	the	URLs	one	by	one	(in	a	left	to	right	order)	to	perform	the
operations.

For	some	options	(for	example		-o		or		-O		that	tell	curl	where	to	store	the	transfer),	you	may
want	to	specify	one	option	for	each	URL	on	the	command	line.

curl	will	return	an	exit	code	for	its	operation	on	the	last	URL	used.	If	you	instead	rather	want
curl	to	exit	with	an	error	on	the	first	URL	in	the	set	that	fails,	use	the		--fail-early		option.

Separate	options	per	URL
In	previous	sections	we	described	how	curl	always	parses	all	options	in	the	whole	command
line	and	applies	those	to	all	the	URLs	that	it	transfers.

That	was	a	simplification:	curl	also	offers	an	option	(-;,	--next)	that	inserts	a	sort	of	boundary
between	a	set	of	options	and	URLs	for	which	it	will	apply	the	options.	When	the	command-
line	parser	finds	a	--next	option,	it	applies	the	following	options	to	the	next	set	of	URLs.	The	-
-next	option	thus	works	as	a	divider	between	a	set	of	options	and	URLs.	You	can	use	as
many	--next	options	as	you	please.

As	an	example,	we	do	an	HTTP	GET	to	a	URL	and	follow	redirects,	we	then	make	a	second
HTTP	POST	to	a	different	URL	and	we	round	it	up	with	a	HEAD	request	to	a	third	URL.	All	in
a	single	command	line:

URLs

76

curl	--location	http://example.com/1	--next

		--data	sendthis	http://example.com/2	--next

		--head	http://example.com/3

Trying	something	like	that	without	the	--next	options	on	the	command	line	would	generate	an
illegal	command	line	since	curl	would	attempt	to	combine	both	a	POST	and	a	HEAD:

Warning:	You	can	only	select	one	HTTP	request	method!	You	asked	for	both	POST

Warning:	(-d,	--data)	and	HEAD	(-I,	--head).

Connection	reuse
Setting	up	a	TCP	connection	and	especially	a	TLS	connection	can	be	a	slow	process,	even
on	high	bandwidth	networks.

It	can	be	useful	to	remember	that	curl	has	a	connection	pool	internally	which	keeps
previously	used	connections	alive	and	around	for	a	while	after	they	were	used	so	that
subsequent	requests	to	the	same	hosts	can	reuse	an	already	established	connection.

Of	course,	they	can	only	be	kept	alive	for	as	long	as	the	curl	tool	is	running,	but	it	is	a	very
good	reason	for	trying	to	get	several	transfers	done	within	the	same	command	line	instead
of	running	several	independent	curl	command	line	invocations.

URLs

77

URL	globbing
At	times	you	want	to	get	a	range	of	URLs	that	are	mostly	the	same,	with	only	a	small	portion
of	it	changing	between	the	requests.	Maybe	it	is	a	numeric	range	or	maybe	a	set	of	names.
curl	offers	"globbing"	as	a	way	to	specify	many	URLs	like	that	easily.

The	globbing	uses	the	reserved	symbols	[]	and	{}	for	this,	symbols	that	normally	cannot	be
part	of	a	legal	URL	(except	for	numerical	IPv6	addresses	but	curl	handles	them	fine
anyway).	If	the	globbing	gets	in	your	way,	disable	it	with		-g,	--globoff	.

While	most	transfer	related	functionality	in	curl	is	provided	by	the	libcurl	library,	the	URL
globbing	feature	is	not!

Numerical	ranges

You	can	ask	for	a	numerical	range	with	[N-M]	syntax,	where	N	is	the	start	index	and	it	goes
up	to	and	including	M.	For	example,	you	can	ask	for	100	images	one	by	one	that	are	named
numerically:

curl	-O	http://example.com/[1-100].png

and	it	can	even	do	the	ranges	with	zero	prefixes,	like	if	the	number	is	three	digits	all	the	time:

curl	-O	http://example.com/[001-100].png

Or	maybe	you	only	want	even	numbered	images	so	you	tell	curl	a	step	counter	too.	This
example	range	goes	from	0	to	100	with	an	increment	of	2:

curl	-O	http://example.com/[0-100:2].png

Alphabetical	ranges

curl	can	also	do	alphabetical	ranges,	like	when	a	site	has	sections	named	a	to	z:

curl	-O	http://example.com/section[a-z].html

A	list

URL	globbing

78

Sometimes	the	parts	don't	follow	such	an	easy	pattern,	and	then	you	can	instead	give	the
full	list	yourself	but	then	within	the	curly	braces	instead	of	the	brackets	used	for	the	ranges:

curl	-O	http://example.com/{one,two,three,alpha,beta}.html

Combinations

You	can	use	several	globs	in	the	same	URL	which	then	will	make	curl	iterate	over	those,	too.
To	download	the	images	of	Ben,	Alice	and	Frank,	in	both	the	resolutions	100x100	and
1000x1000,	a	command	line	could	look	like:

curl	-O	http://example.com/{Ben,Alice,Frank}-{100x100,1000x1000}.jpg

Or	download	all	the	images	of	a	chess	board,	indexed	by	two	coordinates	ranged	0	to	7:

curl	-O	http://example.com/chess-[0-7]x[0-7].jpg

And	you	can,	of	course,	mix	ranges	and	series.	Get	a	week's	worth	of	logs	for	both	the	web
server	and	the	mail	server:

curl	-O	http://example.com/{web,mail}-log[0-6].txt

Output	variables	for	globbing

In	all	the	globbing	examples	previously	in	this	chapter	we	have	selected	to	use	the		-O	/	--
remote-name		option,	which	makes	curl	save	the	target	file	using	the	file	name	part	of	the	used
URL.

Sometimes	that	is	not	enough.	You	are	downloading	multiple	files	and	maybe	you	want	to
save	them	in	a	different	subdirectory	or	create	the	saved	file	names	differently.	curl,	of
course,	has	a	solution	for	these	situations	as	well:	output	file	name	variables.

Each	"glob"	used	in	a	URL	gets	a	separate	variable.	They	are	referenced	as	'#[num]'	-	that
means	the	single	letter	'#'	followed	by	the	glob	number	which	starts	with	1	for	the	first	glob
and	ends	with	the	last	glob.

Save	the	main	pages	of	two	different	sites:

curl	http://{one,two}.example.com	-o	"file_#1.txt"

Save	the	outputs	from	a	command	line	with	two	globs	in	a	subdirectory;

URL	globbing

79

curl	http://{site,host}.host[1-5].example.com	-o	"subdir/#1_#2"

URL	globbing

80

List	all	command-line	options
curl	has	more	than	two	hundred	command-line	options	and	the	number	of	options	keep
increasing	over	time.	Chances	are	the	number	of	options	will	reach	250	within	a	few	years.

In	order	to	find	out	which	options	you	need	to	perform	as	certain	action,	you	can,	of	course,
list	all	options,	scan	through	the	list	and	pick	the	one	you	are	looking	for.		curl	--help		or
simply		curl	-h		will	get	you	a	list	of	all	existing	options	with	a	brief	explanation.	If	you	don't
really	know	what	you	are	looking	for,	you	probably	won't	be	entirely	satisfied.

Then	you	can	instead	opt	to	use		curl	--manual		which	will	output	the	entire	man	page	for
curl	plus	an	appended	tutorial	for	the	most	common	use	cases.	That	is	a	very	thorough	and
complete	document	on	how	each	option	works	amassing	several	thousand	lines	of
documentation.	To	wade	through	that	is	also	a	tedious	work	and	we	encourage	use	of	a
search	function	through	those	text	masses.	Some	people	will	appreciate	the	man	page	in	its
web	version.

List	options

81

https://curl.haxx.se/docs/manpage.html

Config	file
You	can	easily	end	up	with	curl	command	lines	that	use	a	very	large	number	of	command-
line	options,	making	them	rather	hard	to	work	with.	Sometimes	the	length	of	the	command
line	you	want	to	enter	even	hits	the	maximum	length	your	command-line	system	allows.	The
Microsoft	Windows	command	prompt	being	an	example	of	something	that	has	a	fairly	small
maximum	line	length.

To	aid	such	situations,	curl	offers	a	feature	we	call	"config	file".	It	basically	allows	you	to	write
command-line	options	in	a	text	file	instead	and	then	tell	curl	to	read	options	from	that	file	in
addition	to	the	command	line.

You	tell	curl	to	read	more	command-line	options	from	a	specific	file	with	the	-K/--config
option,	like	this:

curl	-K	cmdline.txt	http://example.com

…and	in	the		cmdline.txt		file	(which,	of	course,	can	use	any	file	name	you	please)	you
enter	each	command	line	per	line:

#	this	is	a	comment,	we	ask	to	follow	redirects

--location

#	ask	to	do	a	HEAD	request

--head

The	config	file	accepts	both	short	and	long	options,	exactly	as	you	would	write	them	on	a
command	line.	As	a	special	extra	feature,	it	also	allows	you	to	write	the	long	format	of	the
options	without	the	leading	two	dashes	to	make	it	easier	to	read.	Using	that	style,	the	config
file	shown	above	can	alternatively	be	written	as:

#	this	is	a	comment,	we	ask	to	follow	redirects

location

#	ask	to	do	a	HEAD	request

head

Command	line	options	that	take	an	argument	must	have	its	argument	provided	on	the	same
line	as	the	option.	For	example	changing	the	User-Agent	HTTP	header	can	be	done	with

user-agent	"Everything-is-an-agent"

Config	file

82

To	allow	the	config	files	to	look	even	more	like	a	true	config	file,	it	also	allows	you	to	use	'='
or	':'	between	the	option	and	its	argument.	As	you	see	above	it	isn't	necessary,	but	some	like
the	clarity	it	offers.	Setting	the	user-agent	option	again:

user-agent	=	"Everything-is-an-agent"

The	argument	to	an	option	can	be	specified	without	double	quotes	and	then	curl	will	treat	the
next	space	or	newline	as	the	end	of	the	argument.	So	if	you	want	to	provide	an	argument
with	embedded	spaces	you	must	use	double	quotes.

The	user	agent	string	example	we	have	used	above	has	no	white	spaces	and	therefore	it
can	also	be	provided	without	the	quotes	like:

user-agent	=	Everything-is-an-agent

Finally,	if	you	want	to	provide	a	URL	in	a	config	file,	you	must	do	that	the		--url		way,	or	just
with		url	,	and	not	like	on	the	command	line	where	basically	everything	that	isn't	an	option	is
assumed	to	be	a	URL.	So	you	provide	a	URL	for	curl	like	this:

url	=	"http://example.com"

Default	config	file

When	curl	is	invoked,	it	always	(unless		-q		is	used)	checks	for	a	default	config	file	and	uses
it	if	found.	The	file	name	it	checks	for	is		.curlrc		on	Unix-like	systems	and		_curlrc		on
Windows.

The	default	config	file	is	checked	for	in	the	following	places	in	this	order:

1.	 curl	tries	to	find	the	"home	directory":	It	first	checks	for	the	CURL_HOME	and	then	the
HOME	environment	variables.	Failing	that,	it	uses		getpwuid()		on	Unix-like	systems
(which	returns	the	home	directory	given	the	current	user	in	your	system).	On	Windows,
it	then	checks	for	the	APPDATA	variable,	or	as	a	last	resort	the
'%USERPROFILE%\Application	Data'.

2.	 On	Windows,	if	there	is	no	_curlrc	file	in	the	home	directory,	it	checks	for	one	in	the
same	directory	the	curl	executable	is	placed.	On	Unix-like	systems,	it	will	simply	try	to
load	.curlrc	from	the	determined	home	directory.

Config	file

83

Passwords	and	snooping
Passwords	are	tricky	and	sensitive.	Leaking	a	password	can	make	someone	else	than	you
access	the	resources	and	the	data	otherwise	protected.

curl	offers	several	ways	to	receive	passwords	from	the	user	and	then	subsequently	pass
them	on	or	use	them	to	something	else.

The	most	basic	curl	authentication	option	is		-u	/	--user	.	It	accepts	an	argument	that	is	the
user	name	and	password,	colon	separated.	Like	when	alice	wants	to	request	a	page
requiring	HTTP	authentication	and	her	password	is	'12345':

$	curl	-u	alice:12345	http://example.com/

Command	line	leakage

Several	potentially	bad	things	are	going	on	here.	First,	we	are	entering	a	password	on	the
command	line	and	the	command	line	might	be	readable	for	other	users	on	the	same	system
(assuming	you	have	a	multi-user	system).	curl	will	help	minimize	that	risk	by	trying	to	blank
out	passwords	from	process	listings.

One	way	to	avoid	passing	the	user	name	and	password	on	the	command	line	is	to	instead
use	a	.netrc	file	or	a	config	file.	You	can	also	use	the		-u		option	without	specifying	the
password,	and	then	curl	will	instead	prompt	the	user	for	it	when	it	runs.

Network	leakage

Secondly,	this	command	line	sends	the	user	credentials	to	an	HTTP	server,	which	is	a	clear-
text	protocol	that	is	open	for	man-in-the-middle	or	other	snoopers	to	spy	on	the	connection
and	see	what	is	sent.	In	this	command	line	example,	it	makes	curl	use	HTTP	Basic
authentication	and	that	is	completely	insecure.

There	are	several	ways	to	avoid	this,	and	the	key	is,	of	course,	then	to	avoid	protocols	or
authentication	schemes	that	sends	credentials	in	the	plain	over	the	network.	Easiest	is
perhaps	to	make	sure	you	use	encrypted	versions	of	protocols.	Use	HTTPS	instead	of
HTTP,	use	FTPS	instead	of	FTP	and	so	on.

If	you	need	to	stick	to	a	plain	text	and	insecure	protocol,	then	see	if	you	can	switch	to	using
an	authentication	method	that	avoids	sending	the	credentials	in	the	clear.	If	you	want	HTTP,
such	methods	would	include	Digest	(--digest),	Negotiate	(--negotiate.)	and	NTLM	(--
ntlm).

Passwords

84

http://example.com/

Passwords

85

The	progress	meter
curl	has	a	built-in	progress	meter.	When	curl	is	invoked	to	transfer	data	(either	uploading	or
downloading)	it	can	show	that	meter	in	the	terminal	screen	to	show	how	the	transfer	is
progressing,	namely	the	current	transfer	speed,	how	long	it	has	been	going	on	and	how	long
it	thinks	it	might	be	left	until	completion.

The	progress	meter	is	inhibited	if	curl	deems	that	there	is	output	going	to	the	terminal,	as
then	would	the	progress	meter	interfere	with	that	output	and	just	mess	up	what	gets
displayed.	A	user	can	also	forcibly	switch	off	the	progress	meter	with	the		-s	/	--silent	
option,	which	tells	curl	to	hush.

If	you	invoke	curl	and	don't	get	the	progress	meter,	make	sure	your	output	is	directed
somewhere	other	than	the	terminal.

curl	also	features	an	alternative	and	simpler	progress	meter	that	you	enable	with		-#	/	--
progress-bar	.	As	the	long	name	implies,	it	instead	shows	the	transfer	as	progress	bar.

At	times	when	curl	is	asked	to	transfer	data,	it	can't	figure	out	the	total	size	of	the	requested
operation	and	that	then	subsequently	makes	the	progress	meter	contain	fewer	details	and	it
cannot,	for	example,	make	forecasts	for	transfer	times,	etc.

Units

The	progress	meter	displays	bytes	and	bytes	per	second.

It	will	also	use	suffixes	for	larger	amounts	of	bytes,	using	the	1024	base	system	so	1024	is
one	kilobyte	(1K),	2048	is	2K,	etc.	curl	supports	these:

Suffix Amount Name

K 2^10 kilobyte

M 2^20 megabyte

G 2^30 gigabyte

T 2^40 terabyte

P 2^50 petabyte

The	times	are	displayed	using	H:MM:SS	for	hours,	minutes	and	seconds.

Progress	meter	legend

Progress	meter

86

The	progress	meter	exists	to	show	a	user	that	something	actually	is	happening.	The	different
fields	in	the	output	have	the	following	meaning:

%	Total				%	Received	%	Xferd		Average	Speed										Time													Curr.

																															Dload		Upload	Total				Current		Left				Speed

0		151M				0	38608				0					0			9406						0		4:41:43		0:00:04		4:41:39		9287

From	left	to	right:

Title Meaning

% Percentage	completed	of	the	whole	transfer

Total Total	size	of	the	whole	expected	transfer	(if	known)

% Percentage	completed	of	the	download

Received Currently	downloaded	number	of	bytes

% Percentage	completed	of	the	upload

Xferd Currently	uploaded	number	of	bytes

Average
Speed
Dload

Average	transfer	speed	of	the	entire	download	so	far,	in	number	of	bytes
per	second

Average
Speed
Upload

Average	transfer	speed	of	the	entire	upload	so	far,	in	number	of	bytes	per
second

Time	Total Expected	time	to	complete	the	operation,	in	HH:MM:SS	notation	for
hours,	minutes	and	seconds

Time
Current

Time	passed	since	the	start	of	the	transfer,	in	HH:MM:SS	notation	for
hours,	minutes	and	seconds

Time	Left Expected	time	left	to	completion,	in	HH:MM:SS	notation	for	hours,
minutes	and	seconds

Curr.Speed Average	transfer	speed	over	the	last	5	seconds	(the	first	5	seconds	of	a
transfer	is	based	on	less	time,	of	course)	in	number	of	bytes	per	second

Progress	meter

87

Using	curl
Previous	chapters	have	described	some	basic	details	on	what	curl	is	and	something	about
the	basic	command	lines.	You	use	command-line	options	and	you	pass	on	URLs	to	work
with.

In	this	chapter,	we	are	going	to	dive	deeper	into	a	variety	of	different	concepts	of	what	curl
can	do	and	how	to	tell	curl	to	use	these	features.	You	should	consider	all	these	features	as
different	tools	that	are	here	to	help	you	do	your	file	transfer	tasks	as	conveniently	as
possible.

Supported	protocols
curl	supports	or	can	be	made	to	support	(if	built	so)	the	following	protocols.

DICT,	FILE,	FTP,	FTPS,	GOPHER,	HTTP,	HTTPS,	IMAP,	IMAPS,	LDAP,	LDAPS,	POP3,
POP3S,	RTMP,	RTSP,	SCP,	SFTP,	SMB,	SMTP,	SMTPS,	TELNET	and	TFTP

Using	curl

88

Verbose	mode
If	your	curl	command	doesn't	execute	or	return	what	you	expected	it	to,	your	first	gut
reaction	should	always	be	to	run	the	command	with	the		-v	/	--verbose		option	to	get	more
information.

When	verbose	mode	is	enabled,	curl	gets	more	talkative	and	will	explain	and	show	a	lot
more	of	its	doings.	It	will	add	informational	tests	and	prefix	them	with	'*'.	For	example,	let's
see	what	curl	might	say	when	trying	a	simple	HTTP	example	(saving	the	downloaded	data	in
the	file	called	'saved'):

$	curl	-v	http://example.com	-o	saved

*	Rebuilt	URL	to:	http://example.com/

Ok	so	we	invoked	curl	with	a	URL	that	it	considers	incomplete	so	it	helps	us	and	it	adds	a
trailing	slash	before	it	moves	on.

*			Trying	93.184.216.34...

This	tells	us	curl	now	tries	to	connect	to	this	IP	address.	It	means	the	name	'example.com'
has	been	resolved	to	one	or	more	addresses	and	this	is	the	first	(and	possibly	only)	address
curl	will	try	to	connect	to.

*	Connected	to	example.com	(93.184.216.34)	port	80	(#0)

It	worked!	curl	connected	to	the	site	and	here	it	explains	how	the	name	maps	to	the	IP
address	and	on	which	port	it	has	connected	to.	The	'(#0)'	part	is	which	internal	number	curl
has	given	this	connection.	If	you	try	multiple	URLs	in	the	same	command	line	you	can	see	it
use	more	connections	or	reuse	connections,	so	the	connection	counter	may	increase	or	not
increase	depending	on	what	curl	decides	it	needs	to	do.

If	we	use	an	HTTPS://	URL	instead	of	an	HTTP	one,	there	will	also	be	a	whole	bunch	of
lines	explaining	how	curl	uses	CA	certs	to	verify	the	server's	certificate	and	some	details
from	the	server's	certificate,	etc.	Including	which	ciphers	were	selected	and	more	TLS
details.

In	addition	to	the	added	information	given	from	curl	internals,	the	-v	verbose	mode	will	also
make	curl	show	all	headers	it	sends	and	receives.	For	protocols	without	headers	(like	FTP,
SMTP,	POP3	and	so	on),	we	can	consider	commands	and	responses	as	headers	and	they
will	thus	also	be	shown	with	-v.

Verbose

89

If	we	then	continue	the	output	seen	from	the	command	above	(but	ignore	the	actual	HTML
response),	curl	will	show:

>	GET	/	HTTP/1.1

>	Host:	example.com

>	User-Agent:	curl/7.45.0

>	Accept:	*/*

>

This	is	the	full	HTTP	request	to	the	site.	This	request	is	how	it	looks	in	a	default	curl	7.45.0
installation	and	it	may,	of	course,	differ	slightly	between	different	releases	and	in	particular	it
will	change	if	you	add	command	line	options.

The	last	line	of	the	HTTP	request	headers	looks	empty,	and	it	is.	It	signals	the	separation
between	the	headers	and	the	body,	and	in	this	request	there	is	no	"body"	to	send.

Moving	on	and	assuming	everything	goes	according	to	plan,	the	sent	request	will	get	a
corresponding	response	from	the	server	and	that	HTTP	response	will	start	with	a	set	of
headers	before	the	response	body:

<	HTTP/1.1	200	OK

<	Accept-Ranges:	bytes

<	Cache-Control:	max-age=604800

<	Content-Type:	text/html

<	Date:	Sat,	19	Dec	2015	22:01:03	GMT

<	Etag:	"359670651"

<	Expires:	Sat,	26	Dec	2015	22:01:03	GMT

<	Last-Modified:	Fri,	09	Aug	2013	23:54:35	GMT

<	Server:	ECS	(ewr/15BD)

<	Vary:	Accept-Encoding

<	X-Cache:	HIT

<	x-ec-custom-error:	1

<	Content-Length:	1270

<

This	may	look	mostly	like	mumbo	jumbo	to	you,	but	this	is	normal	set	of	HTTP	headers—
metadata—about	the	response.	The	first	line's	"200"	might	be	the	most	important	piece	of
information	in	there	and	means	"everything	is	fine".

The	last	line	of	the	received	headers	is,	as	you	can	see,	empty,	and	that	is	the	marker	used
for	the	HTTP	protocol	to	signal	the	end	of	the	headers.

After	the	headers	comes	the	actual	response	body,	the	data	payload.	The	regular	-v	verbose
mode	does	not	show	that	data	but	only	displays

{	[1270	bytes	data]

Verbose

90

That	1270	bytes	should	then	be	in	the	'saved'	file.	You	can	also	see	that	there	was	a	header
named	Content-Length:	in	the	response	that	contained	the	exact	file	length	(it	won't	always
be	present	in	responses).

--trace	and	--trace-ascii

There	are	times	when		-v		is	not	enough.	In	particular,	when	you	want	to	store	the	complete
stream	including	the	actual	transferred	data.

For	situations	when	curl	does	encrypted	file	transfers	with	protocols	such	as	HTTPS,	FTPS
or	SFTP,	other	network	monitoring	tools	(like	Wireshark	or	tcpdump)	won't	be	able	to	do	this
job	as	easily	for	you.

For	this,	curl	offers	two	other	options	that	you	use	instead	of		-v	.

	--trace	[filename]		will	save	a	full	trace	in	the	given	file	name.	You	can	also	use	'-'	(a	single
minus)	instead	of	a	file	name	to	get	it	passed	to	stdout.	You	would	use	it	like	this:

$	curl	--trace	dump	http://example.com

When	completed,	there's	a	'dump'	file	that	can	turn	out	pretty	sizable.	In	this	case,	the	15
first	lines	of	the	dump	file	looks	like:

==	Info:	Rebuilt	URL	to:	http://example.com/

==	Info:			Trying	93.184.216.34...

==	Info:	Connected	to	example.com	(93.184.216.34)	port	80	(#0)

=>	Send	header,	75	bytes	(0x4b)

0000:	47	45	54	20	2f	20	48	54	54	50	2f	31	2e	31	0d	0a	GET	/	HTTP/1.1..

0010:	48	6f	73	74	3a	20	65	78	61	6d	70	6c	65	2e	63	6f	Host:	example.co

0020:	6d	0d	0a	55	73	65	72	2d	41	67	65	6e	74	3a	20	63	m..User-Agent:	c

0030:	75	72	6c	2f	37	2e	34	35	2e	30	0d	0a	41	63	63	65	url/7.45.0..Acce

0040:	70	74	3a	20	2a	2f	2a	0d	0a	0d	0a																pt:	*/*....

<=	Recv	header,	17	bytes	(0x11)

0000:	48	54	54	50	2f	31	2e	31	20	32	30	30	20	4f	4b	0d	HTTP/1.1	200	OK.

0010:	0a																																														.

<=	Recv	header,	22	bytes	(0x16)

0000:	41	63	63	65	70	74	2d	52	61	6e	67	65	73	3a	20	62	Accept-Ranges:	b

0010:	79	74	65	73	0d	0a																															ytes..

Every	single	sent	and	received	byte	get	displayed	individually	in	hexadecimal	numbers.

If	you	think	the	hexadecimals	aren't	helping,	you	can	try		--trace-ascii	[filename]		instead,
also	this	accepting	'-'	for	stdout	and	that	makes	the	15	first	lines	of	tracing	look	like:

Verbose

91

==	Info:	Rebuilt	URL	to:	http://example.com/

==	Info:			Trying	93.184.216.34...

==	Info:	Connected	to	example.com	(93.184.216.34)	port	80	(#0)

=>	Send	header,	75	bytes	(0x4b)

0000:	GET	/	HTTP/1.1

0010:	Host:	example.com

0023:	User-Agent:	curl/7.45.0

003c:	Accept:	*/*

0049:

<=	Recv	header,	17	bytes	(0x11)

0000:	HTTP/1.1	200	OK

<=	Recv	header,	22	bytes	(0x16)

0000:	Accept-Ranges:	bytes

<=	Recv	header,	31	bytes	(0x1f)

0000:	Cache-Control:	max-age=604800

--trace-time

This	options	prefixes	all	verbose/trace	outputs	with	a	high	resolution	timer	for	when	the	line
is	printed.	It	works	with	the	regular		-v	/	--verbose		option	as	well	as	with		--trace		and		--
trace-ascii	.

An	example	could	look	like	this:

$	curl	-v	--trace-time	http://example.com

23:38:56.837164	*	Rebuilt	URL	to:	http://example.com/

23:38:56.841456	*			Trying	93.184.216.34...

23:38:56.935155	*	Connected	to	example.com	(93.184.216.34)	port	80	(#0)

23:38:56.935296	>	GET	/	HTTP/1.1

23:38:56.935296	>	Host:	example.com

23:38:56.935296	>	User-Agent:	curl/7.45.0

23:38:56.935296	>	Accept:	*/*

23:38:56.935296	>

23:38:57.029570	<	HTTP/1.1	200	OK

23:38:57.029699	<	Accept-Ranges:	bytes

23:38:57.029803	<	Cache-Control:	max-age=604800

23:38:57.029903	<	Content-Type:	text/html

----	snip	----

The	lines	are	all	the	local	time	as	hours:minutes:seconds	and	then	number	of	microseconds
in	that	second.

HTTP/2

Verbose

92

When	doing	file	transfers	using	version	two	of	the	HTTP	protocol,	HTTP/2,	curl	sends	and
receives	compressed	headers.	So	to	display	outgoing	and	incoming	HTTP/2	headers	in	a
readable	and	understandable	way,	curl	will	actually	show	the	uncompressed	versions	in	a
style	similar	to	how	they	appear	with	HTTP/1.1.

--write-out

This	is	one	of	the	often	forgotten	little	gems	in	the	curl	arsenal	of	command	line	options.		--
write-out		or	just		-w		for	short,	writes	out	information	after	a	transfer	has	completed	and	it
has	a	large	range	of	variables	that	you	can	include	in	the	output,	variables	that	have	been
set	with	values	and	information	from	the	transfer.

You	tell	curl	to	write	a	string	just	by	passing	that	string	to	this	option:

curl	-w	"formatted	string"	http://example.com/

…and	you	can	also	have	curl	read	that	string	from	a	given	file	instead	if	you	prefix	the	string
with	'@':

curl	-w	@filename	http://example.com/

…or	even	have	curl	read	the	string	from	stdin	if	you	use	'-'	as	filename:

curl	-w	@-	http://example.com/

The	variables	that	are	available	are	accessed	by	writing		%{variable_name}		in	the	string	and
that	variable	will	then	be	substituted	by	the	correct	value.	To	output	a	normal	'%'	you	just
write	it	as	'%%'.	You	can	also	output	a	newline	by	using	'\n',	a	carriage	return	with	'\r'	and	a
tab	space	with	'\t'.

(The	%-symbol	is	special	on	the	Windows	command	line,	where	all	occurrences	of	%	must
be	doubled	when	using	this	option.)

As	an	example,	we	can	output	the	Content-Type	and	the	response	code	from	an	HTTP
transfer,	separated	with	newlines	and	some	extra	text	like	this:

curl	-w	"Type:	%{content_type}\nCode:	%{response_code}\n"	http://example.com

This	feature	writes	the	output	to	stdout	so	you	probably	want	to	make	sure	that	you	don't
also	send	the	downloaded	content	to	stdout	as	then	you	might	have	a	hard	time	to	separate
out	the	data.

Verbose

93

Available	--write-out	variables

Some	of	these	variables	are	not	available	in	really	old	curl	versions.

%{content_type}	shows	the	Content-Type	of	the	requested	document,	if	there	was	any.

%{filename_effective}	shows	the	ultimate	filename	that	curl	writes	out	to.	This	is	only
meaningful	if	curl	is	told	to	write	to	a	file	with	the		--remote-name		or		--output		option.	It's
most	useful	in	combination	with	the		--remote-header-name		option.

%{ftp_entry_path}	shows	the	initial	path	curl	ended	up	in	when	logging	on	to	the	remote
FTP	server.

%{response_code}	shows	the	numerical	response	code	that	was	found	in	the	last
transfer.

%{http_connect}	shows	the	numerical	code	that	was	found	in	the	last	response	(from	a
proxy)	to	a	curl	CONNECT	request.

%{local_ip}	shows	the	IP	address	of	the	local	end	of	the	most	recently	done	connection
—can	be	either	IPv4	or	IPv6

%{local_port}	shows	the	local	port	number	of	the	most	recently	made	connection

%{num_connects}	shows	the	number	of	new	connects	made	in	the	recent	transfer.

%{num_redirects}	shows	the	number	of	redirects	that	were	followed	in	the	request.

%{redirect_url}	shows	the	actual	URL	a	redirect	would	take	you	to	when	an	HTTP
request	was	made	without		-L		to	follow	redirects.

%{remote_ip}	shows	the	remote	IP	address	of	the	most	recently	made	connection—can
be	either	IPv4	or	IPv6.

%{remote_port}	shows	the	remote	port	number	of	the	most	recently	made	connection.

%{size_download}	shows	the	total	number	of	bytes	that	were	downloaded.

%{size_header}	shows	the	total	number	of	bytes	of	the	downloaded	headers.

%{size_request}	shows	the	total	number	of	bytes	that	were	sent	in	the	HTTP	request.

%{size_upload}	shows	the	total	number	of	bytes	that	were	uploaded.

%{speed_download}	shows	the	average	download	speed	that	curl	measured	for	the
complete	download	in	bytes	per	second.

%{speed_upload}	shows	the	average	upload	speed	that	curl	measured	for	the	complete
upload	in	bytes	per	second.

Verbose

94

%{ssl_verify_result}	shows	the	result	of	the	SSL	peer	certificate	verification	that	was
requested.	0	means	the	verification	was	successful.

%{time_appconnect}	shows	the	time,	in	seconds,	it	took	from	the	start	until	the
SSL/SSH/etc	connect/handshake	to	the	remote	host	was	completed.

%{time_connect}	shows	the	time,	in	seconds,	it	took	from	the	start	until	the	TCP
connect	to	the	remote	host	(or	proxy)	was	completed.

%{time_namelookup}	shows	the	time,	in	seconds,	it	took	from	the	start	until	the	name
resolving	was	completed.

%{time_pretransfer}	shows	the	time,	in	seconds,	it	took	from	the	start	until	the	file
transfer	was	just	about	to	begin.	This	includes	all	pre-transfer	commands	and
negotiations	that	are	specific	to	the	particular	protocol(s)	involved.

%{time_redirect}	shows	the	time,	in	seconds,	it	took	for	all	redirection	steps	including
name	lookup,	connect,	pre-transfer	and	transfer	before	the	final	transaction	was	started.
time_redirect	shows	the	complete	execution	time	for	multiple	redirections.

%{time_starttransfer}	shows	the	time,	in	seconds,	it	took	from	the	start	until	the	first	byte
was	just	about	to	be	transferred.	This	includes	time_pretransfer	and	also	the	time	the
server	needed	to	calculate	the	result.

%{time_total}	shows	the	total	time,	in	seconds,	that	the	full	operation	lasted.	The	time
will	be	displayed	with	millisecond	resolution.

%{url_effective}	shows	the	URL	that	was	fetched	last.	This	is	particularly	meaningful	if
you	have	told	curl	to	follow	Location:	headers	(with		-L).

Silence

The	opposite	of	verbose	is,	of	course,	to	make	curl	more	silent.	With	the		-s		(or		--silent)
option	you	make	curl	switch	off	the	progress	meter	and	not	output	any	error	messages	for
when	errors	occur.	It	gets	mute.	It	will	still	output	the	downloaded	data	you	ask	it	to.

With	silence	activated,	you	can	ask	for	it	to	still	output	the	error	message	on	failures	by
adding		-S		or		--show-error	.

Verbose

95

Persistent	connections
When	setting	up	TCP	connections	to	sites,	curl	will	keep	the	old	connection	around	for	a
while	so	that	if	the	next	transfer	is	to	the	same	host	it	can	reuse	the	same	connection	again
and	thus	save	a	lot	of	time.	We	call	this	persistent	connections.	curl	will	always	try	to	keep
connections	alive	and	reuse	existing	connections	as	far	as	it	can.

The	curl	command-line	tool	can,	however,	only	keep	connections	alive	for	as	long	as	it	runs,
so	as	soon	as	it	exits	back	to	your	command	line	it	has	to	close	down	all	currently	open
connections	(and	also	free	and	clean	up	all	the	other	caches	it	uses	to	decrease	time	of
subsequent	operations).	We	call	the	pool	of	alive	connections	the	"connection	cache".

If	you	want	to	perform	N	transfers	or	operations	against	the	same	host	or	same	base	URL,
you	could	gain	a	lot	of	speed	by	trying	to	do	them	in	as	few	curl	command	lines	as	possible
instead	of	repeatedly	invoking	curl	with	one	URL	at	a	time.

Persistent	connections

96

Downloads
"Download"	means	getting	data	from	a	server	on	a	network,	and	the	server	is	then	clearly
considered	to	be	"above"	you.	This	is	loading	data	down	from	the	server	onto	your	machine
where	you	are	running	curl.

Downloading	is	probably	the	most	common	use	case	for	curl—retrieving	the	specific	data
pointed	to	by	a	URL	onto	your	machine.

What	exactly	is	downloading?

You	specify	the	resource	to	download	by	giving	curl	a	URL.	curl	defaults	to	downloading	a
URL	unless	told	otherwise,	and	the	URL	identifies	what	to	download.	In	this	example	the
URL	to	download	is	"http://example.com":

curl	http://example.com

The	URL	is	broken	down	into	its	individual	components	(as	explained	elsewhere),	the
correct	server	is	contacted	and	is	then	asked	to	deliver	the	specific	resource—often	a	file.
The	server	then	delivers	the	data,	or	it	refuses	or	perhaps	the	client	asked	for	the	wrong
data	and	then	that	data	is	delivered.

A	request	for	a	resource	is	protocol-specific	so	a	FTP://	URL	works	differently	than	an
HTTP://	URL	or	an	SFTP://	URL.

A	URL	without	a	path	part,	that	is	a	URL	that	has	a	host	name	part	only	(like	the
"http://example.com"	example	above)	will	get	a	slash	('/')	appended	to	it	internally	and	then
that	is	the	resource	curl	will	ask	for	from	the	server.

If	you	specify	multiple	URLs	on	the	command	line,	curl	will	download	each	URL	one	by	one.
It	won't	start	the	second	transfer	until	the	first	one	is	complete,	etc.

Storing	downloads

If	you	try	the	example	download	as	in	the	previous	section,	you	will	notice	that	curl	will
output	the	downloaded	data	to	stdout	unless	told	to	do	something	else.	Outputting	data	to
stdout	is	really	useful	when	you	want	to	pipe	it	into	another	program	or	similar,	but	it	is	not
always	the	optimal	way	to	deal	with	your	downloads.

Downloads

97

http://example.com
http://example.com

Give	curl	a	specific	file	name	to	save	the	download	in	with		-o	[filename]		(with		--output	
as	the	long	version	of	the	option),	where	filename	is	either	just	a	file	name,	a	relative	path	to
a	file	name	or	a	full	path	to	the	file.

Also	note	that	you	can	put	the		-o		before	or	after	the	URL;	it	makes	no	difference:

curl	-o	output.html	http://example.com/

curl	-o	/tmp/index.html	http://example.com/

curl	http://example.com	-o	../../folder/savethis.html

This	is,	of	course,	not	limited	to	http://	URLs	but	works	the	same	way	no	matter	which	type	of
URL	you	download:

curl	-o	file.txt	ftp://example.com/path/to/file-name.ext

curl	has	several	other	ways	to	store	and	name	the	downloaded	data.	Details	follow!

Download	to	a	file	named	by	the	URL

Many	URLs,	however,	already	contain	the	file	name	part	in	the	rightmost	end.	curl	lets	you
use	that	as	a	shortcut	so	you	don't	have	to	repeat	it	with		-o	.	So	instead	of:

curl	-o	file.html	http://example.com/file.html

You	can	save	the	remove	URL	resource	into	the	local	file	'file.html'	with	this:

curl	-O	http://example.com/file.html

This	is	the		-O		(uppercase	letter	o)	option,	or		--remote-name		for	the	long	name	version.	The
-O	option	selects	the	local	file	name	to	use	by	picking	the	file	name	part	of	the	URL	that	you
provide.	This	is	important.	You	specify	the	URL	and	curl	picks	the	name	from	this	data.	If	the
site	redirects	curl	further	(and	if	you	tell	curl	to	follow	redirects),	it	doesn't	change	the	file
name	curl	will	use	for	storing	this.

Get	the	target	file	name	from	the	server

HTTP	servers	have	the	option	to	provide	a	header	named		Content-Disposition:		in
responses.	That	header	may	contain	a	suggested	file	name	for	the	contents	delivered,	and
curl	can	be	told	to	use	that	hint	to	name	its	local	file.	The		-J	/	--remote-header-name	

Downloads

98

enables	this.	If	you	also	use	the		-O		option,	it	makes	curl	use	the	file	name	from	the	URL	by
default	and	only	if	there's	actually	a	valid	Content-Disposition	header	available,	it	switches	to
saving	using	that	name.

-J	has	some	problems	and	risks	associated	with	it	that	users	need	to	be	aware	of:

1.	 It	will	only	use	the	rightmost	part	of	the	suggested	file	name,	so	any	path	or	directories
the	server	suggests	will	be	stripped	out.

2.	 Since	the	file	name	is	entirely	selected	by	the	server,	curl	will,	of	course,	overwrite	any
preexisting	local	file	in	your	current	directory	if	the	server	happens	to	provide	such	a	file
name.

3.	 File	name	encoding	and	character	sets	issues.	curl	does	not	decode	the	name	in	any
way,	so	you	may	end	up	with	a	URL-encoded	file	name	where	a	browser	would
otherwise	decode	it	to	something	more	readable	using	a	sensible	character	set.

HTML	and	charsets

curl	will	download	the	exact	binary	data	that	the	server	sends.	This	might	be	of	importance
to	you	in	case,	for	example,	you	download	a	HTML	page	or	other	text	data	that	uses	a
certain	character	encoding	that	your	browser	then	displays	as	expected.	curl	will	then	not
translate	the	arriving	data.

A	common	example	where	this	causes	some	surprising	results	is	when	a	user	downloads	a
web	page	with	something	like:

curl	https://example.com/	-o	storage.html

…and	when	inspecting	the		storage.html		file	after	the	fact,	the	user	realizes	that	one	or
more	characters	look	funny	or	downright	wrong.	This	can	then	very	well	be	because	the
server	sent	the	characters	using	charset	X,	while	your	editor	and	environment	use	charset	Y.
In	an	ideal	world,	we	would	all	use	UTF-8	everywhere	but	unfortunately,	that	is	still	not	the
case.

A	common	work-around	for	this	issue	that	works	decently	is	to	use	the	common		iconv	
utility	to	translate	a	text	file	to	and	from	different	charsets.

Compression

curl	allows	you	to	ask	HTTP	and	HTTPS	servers	to	provide	compressed	versions	of	the	data
and	then	perform	automatic	decompression	of	it	on	arrival.	In	situations	where	bandwidth	is
more	limited	than	CPU	this	will	help	you	receive	more	data	in	a	shorter	amount	of	time.

Downloads

99

HTTP	compression	can	be	done	using	two	different	mechanisms,	one	which	might	be
considered	"The	Right	Way"	and	the	other	that	is	the	way	that	everyone	actually	uses	and	is
the	widespread	and	popular	way	to	do	it!	The	common	way	to	compress	HTTP	content	is
using	the	Content-Encoding	header.	You	ask	curl	to	use	this	with	the		--compressed		option:

curl	--compressed	http://example.com/

With	this	option	enabled	(and	if	the	server	support	it)	it	delivers	the	data	in	a	compressed
way	and	curl	will	decompress	it	before	saving	it	or	sending	it	to	stdout.	This	usually	means
that	as	a	user	you	don't	really	see	or	experience	the	compression	other	than	possibly
noticing	a	faster	transfer.

The		--compressed		option	asks	for	Content-Encoding	compression	using	one	of	the
supported	compression	algorithms.	There's	also	the	rarer	Transfer-Encoding	method,
which	is	the	header	that	was	created	for	this	automated	method	but	was	never	really	widely
adopted.	You	can	tell	curl	to	ask	for	Transfer-Encoded	compression	with		--tr-encoding	:

curl	--tr-encoding	http://example.com/

In	theory,	there's	nothing	that	prevents	you	from	using	both	in	the	same	command	line,
although	in	practice,	you	may	then	experience	that	some	servers	get	a	little	confused	when
ask	to	compress	in	two	different	ways.	It's	generally	safer	to	just	pick	one.

Shell	redirects

When	you	invoke	curl	from	a	shell	or	some	other	command-line	prompt	system,	that
environment	generally	provides	you	with	a	set	of	output	redirection	abilities.	In	most	Linux
and	Unix	shells	and	with	Windows'	command	prompts,	you	direct	stdout	to	a	file	with		>
filename	.	Using	this,	of	course,	makes	the	use	of	-o	or	-O	superfluous.

curl	http://example.com/	>	example.html

Redirecting	output	to	a	file	redirects	all	output	from	curl	to	that	file,	so	even	if	you	ask	to
transfer	more	than	one	URL	to	stdout,	redirecting	the	output	will	get	all	the	URLs'	output
stored	in	that	single	file.

curl	http://example.com/1	http://example.com/2	>	files

Downloads

100

Unix	shells	usually	allow	you	to	redirect	the	stderr	stream	separately.	The	stderr	stream	is
usually	a	stream	that	also	gets	shown	in	the	terminal,	but	you	can	redirect	it	separately	from
the	stdout	stream.	The	stdout	stream	is	for	the	data	while	stderr	is	metadata	and	errors,	etc.,
that	aren't	data.	You	can	redirect	stderr	with		2>file		like	this:

curl	http://example.com	>	files.html	2>errors

Multiple	downloads

As	curl	can	be	told	to	download	many	URLs	in	a	single	command	line,	there	are,	of	course,
times	when	you	want	to	store	these	downloads	in	nicely-named	local	files.

The	key	to	understanding	this	is	that	each	download	URL	needs	its	own	"storage
instruction".	Without	said	"storage	instruction",	curl	will	default	to	sending	the	data	to	stdout.
If	you	ask	for	two	URLs	and	only	tell	curl	where	to	save	the	first	URL,	the	second	one	is	sent
to	stdout.	Like	this:

curl	-o	one.html	http://example.com/1	http://example.com/2

The	"storage	instructions"	are	read	and	handled	in	the	same	order	as	the	download	URLs	so
they	don't	have	to	be	next	to	the	URL	in	any	way.	You	can	round	up	all	the	output	options
first,	last	or	interleaved	with	the	URLs.	You	choose!

These	examples	all	work	the	same	way:

curl	-o	1.txt	-o	2.txt	http://example.com/1	http://example.com/2

curl	http://example.com/1	http://example.com/2	-o	1.txt	-o	2.txt

curl	-o	1.txt	http://example.com/1	http://example.com/2	-o	2.txt

curl	-o	1.txt	http://example.com/1	-o	2.txt	http://example.com/2

The		-O		is	similarly	just	an	instruction	for	a	single	download	so	if	you	download	multiple
URLs,	use	more	of	them:

curl	-O	-O	http://example.com/1	http://example.com/2

Use	the	URL's	file	name	part	for	all	URLs

As	a	reaction	to	adding	a	hundred		-O		options	when	using	a	hundred	URLs,	we	introduced
an	option	called		--remote-name-all	.	This	makes		-O		the	default	operation	for	all	given
URLs.	You	can	still	provide	individual	"storage	instructions"	for	URLs	but	if	you	leave	one	out
for	a	URL	that	gets	downloaded,	the	default	action	is	then	switched	from	stdout	to	-O	style.

Downloads

101

"My	browser	shows	something	else"

A	very	common	use	case	is	using	curl	to	get	a	URL	that	you	can	get	in	your	browser	when
you	paste	the	URL	in	the	browser's	address	bar.

But	a	browser	getting	a	URL	does	so	much	more	and	in	so	many	different	ways	than	curl
that	what	curl	shows	in	your	terminal	output	is	probably	not	at	all	what	you	see	in	your
browser	window.

Client	differences

Curl	only	gets	exactly	what	you	ask	it	to	get	and	it	never	parses	the	actual	content—the	data
—that	the	server	delivers.	A	browser	gets	data	and	it	activates	different	parsers	depending
on	what	kind	of	content	it	thinks	it	gets.	For	example,	if	the	data	is	HTML	it	will	parse	it	to
display	a	web	page	and	possibly	download	other	sub	resources	such	as	images,	JavaScript
and	CSS	files.	When	curl	downloads	a	HTML	it	will	just	get	that	single	HTML	resource,	even
if	it,	when	parsed	by	a	browser,	would	trigger	a	whole	busload	of	more	downloads.	If	you
want	curl	to	download	any	sub-resources	as	well,	you	need	to	pass	those	URLs	to	curl	and
ask	it	to	get	those,	just	like	any	other	URLs.

Clients	also	differ	in	how	they	send	their	requests,	and	some	aspects	of	a	request	for	a
resource	include,	for	example,	format	preferences,	asking	for	compressed	data,	or	just
telling	the	server	from	which	previous	page	we	are	"coming	from".	curl's	requests	will	differ	a
little	or	a	lot	from	how	your	browser	sends	its	requests.

Server	differences

The	server	that	receives	the	request	and	delivers	data	is	often	setup	to	act	in	certain	ways
depending	on	what	kind	of	client	it	thinks	communicates	with	it.	Sometimes	it	is	as	innocent
as	trying	to	deliver	the	best	content	for	the	client,	sometimes	it	is	to	hide	some	content	for
some	clients	or	even	to	try	to	work	around	known	problems	in	specific	browsers.	Then
there's	also,	of	course,	various	kind	of	login	systems	that	might	rely	on	HTTP	authentication
or	cookies	or	the	client	being	from	the	pre-validated	IP	address	range.

Sometimes	getting	the	same	response	from	a	server	using	curl	as	the	response	you	get	with
a	browser	ends	up	really	hard	work.	Users	then	typically	record	their	browser	sessions	with
the	browser's	networking	tools	and	then	compare	that	recording	with	recorded	data	from
curl's		--trace-ascii		option	and	proceed	to	modify	curl's	requests	(often	with		-H	/	--
header)	until	the	server	starts	to	respond	the	same	to	both.

This	type	of	work	can	be	both	time	consuming	and	tedious.	You	should	always	do	this	with
permission	from	the	server	owners	or	admins.

Downloads

102

Intermediaries'	fiddlings

Intermediaries	are	proxies,	explicit	or	implicit	ones.	Some	environments	will	force	you	to	use
one	or	you	may	choose	to	use	one	for	various	reasons,	but	there	are	also	the	transparent
ones	that	will	intercept	your	network	traffic	silently	and	proxy	it	for	you	no	matter	what	you
want.

Proxies	are	"middle	men"	that	terminate	the	traffic	and	then	act	on	your	behalf	to	the	remote
server.	This	can	introduce	all	sorts	of	explicit	filtering	and	"saving"	you	from	certain	content
or	even	"protecting"	the	remote	server	from	what	data	you	try	to	send	to	it,	but	even	more	so
it	introduces	another	software's	view	on	how	the	protocol	works	and	what	the	right	things	to
do	are.

Interfering	intermediaries	are	often	the	cause	of	lots	of	head	aches	and	mysteries	down	to
downright	malicious	modifications	of	content.

We	strongly	encourage	you	to	use	HTTPS	or	other	means	to	verify	that	the	contents	you	are
downloading	or	uploading	are	really	the	data	that	the	remote	server	has	sent	to	you	and	that
your	precious	bytes	end	up	verbatim	at	the	intended	destination.

Rate	limiting

When	curl	transfers	data,	it	will	attempt	to	do	that	as	fast	as	possible.	It	goes	for	both
uploads	and	downloads.	Exactly	how	fast	that	will	be	depends	on	several	factors,	including
your	computer's	ability,	your	own	network	connection's	bandwidth,	the	load	on	the	remote
server	you	are	transferring	to/from	and	the	latency	to	that	server.	And	your	curl	transfers	are
also	likely	to	compete	with	other	transfers	on	the	networks	the	data	travels	over,	from	other
users	or	just	other	apps	by	the	same	user.

In	many	setups,	however,	you	will	find	that	you	can	more	or	less	saturate	your	own	network
connection	with	a	single	curl	command	line.	If	you	have	a	10	megabit	per	second	connection
to	the	Internet,	chances	are	curl	can	use	all	of	those	10	megabits	to	transfer	data.

For	most	use	cases,	using	as	much	bandwidth	as	possible	is	a	good	thing.	It	makes	the
transfer	faster,	it	makes	the	curl	command	complete	sooner	and	it	will	make	the	transfer	use
resources	from	the	server	for	a	shorter	period	of	time.

Sometimes	you	will,	however,	find	that	having	curl	starve	out	other	network	functions	on	your
local	network	connection	is	inconvenient.	In	these	situations	you	may	want	to	tell	curl	to	slow
down	so	that	other	network	users	get	a	better	chance	to	get	their	data	through	as	well.	With
	--limit-rate	[speed]		you	can	tell	curl	to	not	go	faster	than	the	given	number	of	bytes	per
second.	The	rate	limit	value	can	be	given	with	a	letter	suffix	using	one	of	K,	M	and	G	for
kilobytes,	megabytes	and	gigabytes.

Downloads

103

To	make	curl	not	download	data	any	faster	than	200	kilobytes	per	second:

curl	https://example.com/	--limit-rate	200K

The	given	limit	is	the	maximum	average	speed	allowed,	counted	during	the	entire	transfer.	It
means	that	curl	might	use	higher	transfer	speeds	in	short	bursts,	but	over	time	it	uses	no
more	than	the	given	rate.

Also	note	that	curl	never	knows	what	the	maximum	possible	speed	is—it	will	simply	go	as
fast	as	it	can	and	is	allowed.	You	may	know	your	connection's	maximum	speed,	but	curl
does	not.

Maximum	filesize

When	you	want	to	make	sure	your	curl	command	line	won't	try	to	download	a	too-large	file,
you	can	instruct	curl	to	stop	before	doing	that,	if	it	knows	the	size	before	the	transfer	starts!
Maybe	that	would	use	too	much	bandwidth,	take	too	long	time	or	you	don't	have	enough
space	on	your	hard	drive:

curl	--max-filesize	100000	https://example.com/

Give	curl	the	largest	download	you	will	accept	in	number	of	bytes	and	if	curl	can	figure	out
the	size	before	the	transfer	starts	it	will	abort	before	trying	to	download	something	larger.

There	are	many	situations	in	which	curl	cannot	figure	out	the	size	at	the	time	the	transfer
starts	and	this	option	will	not	affect	those	transfers,	even	if	they	may	end	up	larger	than	the
specified	amount.

Metalink

Metalink	is	a	file	description	standard	that	tells	a	client	multiple	locations	where	the	same
content	resides.	A	client	can	then	opt	to	transfer	that	content	from	one	or	many	of	those
sources.

curl	supports	the	Metalink	format	when	asked	to	with	the		--metalink		option.	Then	given
URL	should	then	point	to	a	Metalink	file.	Such	as:

curl	--metalink	https://example.com/example.metalink

Downloads

104

curl	will	make	use	of	the	mirrors	listed	within	the	file	for	failover	if	there	are	errors	(such	as
the	file	or	server	not	being	available).	It	will	also	verify	the	hash	of	the	file	after	the	download
completes.	The	Metalink	file	itself	is	downloaded	and	processed	in	memory	and	not	stored	in
the	local	file	system.

Storing	metadata	in	file	system

When	saving	a	download	to	a	file	with	curl,	the		--xattr		option	tells	curl	to	also	store	certain
file	metadata	in	"extended	file	attributes".	These	extended	attributes	are	basically
standardized	name/value	pairs	stored	in	the	file	system,	assuming	one	of	the	supported	file
systems	and	operating	systems	are	used.

Currently,	the	URL	is	stored	in	the		xdg.origin.url		attribute	and,	for	HTTP,	the	content	type
is	stored	in	the		mime_type		attribute.	If	the	file	system	does	not	support	extended	attributes
when	this	option	is	set,	a	warning	is	issued.

Raw

When		--raw		is	used,	it	disables	all	internal	HTTP	decoding	of	content	or	transfer	encodings
and	instead	makes	curl	passed	on	unaltered,	raw,	data.

This	is	typically	used	if	you	are	writing	some	sort	of	middle	software	and	you	want	to	pass	on
the	content	to	perhaps	another	HTTP	client	and	allow	that	to	do	the	decoding	instead.

Retrying	failed	attempts

Normally	curl	will	only	make	a	single	attempt	to	perform	a	transfer	and	return	an	error	if	not
successful.	Using	the		--retry		option	you	can	tell	curl	to	retry	certain	failed	transfers.

If	a	transient	error	is	returned	when	curl	tries	to	perform	a	transfer,	it	will	retry	this	number	of
times	before	giving	up.	Setting	the	number	to	0	makes	curl	do	no	retries	(which	is	the
default).	Transient	error	means	either:	a	timeout,	an	FTP	4xx	response	code	or	an	HTTP	5xx
response	code.

When	curl	is	about	to	retry	a	transfer,	it	will	first	wait	one	second	and	then	for	all	forthcoming
retries	it	will	double	the	waiting	time	until	it	reaches	10	minutes	which	then	will	be	the	delay
between	the	rest	of	the	retries.	Using		--retry-delay		you	can	disable	this	exponential
backoff	algorithm	and	set	your	own	delay	between	the	attempts.	With		--retry-max-time		you
cap	the	total	time	allowed	for	retries.	The		--max-time		option	will	still	specify	the	longest	time
a	single	of	these	transfers	is	allowed	to	spend.

Resuming	and	ranges

Downloads

105

Resuming	a	download	means	first	checking	the	size	of	what	is	already	present	locally	and
then	asking	the	server	to	send	the	rest	of	it	so	it	can	be	appended.	curl	also	allows	resuming
the	transfer	at	a	custom	point	without	actually	having	anything	already	locally	present.

curl	supports	resumed	downloads	on	several	protocols.	Tell	it	where	to	start	the	transfer	with
the		-C,	--continue-at		option	that	takes	either	a	plain	numerical	byte	counter	offset	where
to	start	or	the	string		-		that	asks	curl	to	figure	it	out	itself	based	on	what	it	knows.	When
using		-	,	curl	will	use	the	destination	file	name	to	figure	out	how	much	data	that	is	already
present	locally	and	ask	use	that	as	an	offset	when	asking	for	more	data	from	the	server.

To	start	downloading	an	FTP	file	from	byte	offset	100:

curl	--continue-at	100	ftp://example.com/bigfile

Continue	downloading	a	previously	interrupted	download:

curl	--continue-at	-	http://example.com/bigfile	-O

If	you	instead	just	want	a	specific	byte	range	from	the	remote	resource	transferred,	you	can
ask	for	only	that.	For	example,	when	you	only	want	1000	bytes	from	offset	100	to	avoid
having	to	download	the	entire	huge	remote	file:

curl	--range	100-1999	http://example.com/bigfile

Downloads

106

Uploads
Uploading	is	a	term	for	sending	data	to	a	remote	server.	Uploading	is	done	differently	for
each	protocol,	and	several	protocols	may	even	allow	different	ways	of	uploading	data.

Protocols	allowing	upload

You	can	upload	data	using	one	of	these	protocols:	FILE,	FTP,	FTPS,	HTTP,	HTTPS,	IMAP,
IMAPS,	SCP,	SFTP,	SMB,	SMBS,	SMTP,	SMTPS	and	TFTP.

HTTP	offers	several	"uploads"

HTTP	(and	its	bigger	brother	HTTPS)	provides	several	different	ways	to	upload	data	to	a
server	and	curl	offers	easy	command-line	options	to	do	it	the	three	most	common	ways,
described	below.

An	interesting	detail	with	HTTP	is	also	that	an	upload	can	also	be	a	download,	in	the	same
operation	and	in	fact	many	downloads	are	initiated	with	an	HTTP	POST.

POST

POST	is	the	HTTP	method	that	was	invented	to	send	data	to	a	receiving	web	application,
and	it	is,	for	example,	how	most	common	HTML	forms	on	the	web	work.	It	usually	sends	a
chunk	of	relatively	small	amounts	of	data	to	the	receiver.

The	upload	kind	is	usually	done	with	the		-d		or		--data		options,	but	there	are	a	few
additional	alterations.

Read	the	detailed	description	on	how	to	do	this	with	curl	in	the	HTTP	POST	with	curl
chapter.

multipart	formpost

Multipart	formposts	are	also	used	in	HTML	forms	on	web	sites;	typically	when	there's	a	file
upload	involved.	This	type	of	upload	is	also	an	HTTP	POST	but	it	sends	the	data	formatted
according	to	some	special	rules,	which	is	what	the	"multipart"	name	means.

Since	it	sends	the	data	formatted	completely	differently,	you	cannot	select	which	type	of
POST	to	use	at	your	own	whim	but	it	entirely	depends	on	what	the	receiving	server	end
expects	and	can	handle.

Uploads

107

HTTP	multipart	formposts	are	done	with		-F	.	See	the	detailed	description	in	the	HTTP
multipart	formposts	chapter.

PUT

HTTP	PUT	is	the	sort	of	upload	that	was	designed	to	send	a	complete	resource	that	is
meant	to	be	put	as-is	on	the	remote	site	or	even	replace	an	existing	resource	there.	That
said,	this	is	also	the	least	used	upload	method	for	HTTP	on	the	web	today	and	lots,	if	not
most,	web	servers	don't	even	have	PUT	enabled.

You	send	off	an	HTTP	upload	using	the	-T	option	with	the	file	to	upload:

curl	-T	uploadthis	http://example.com/

FTP	uploads

Working	with	FTP,	you	get	to	see	the	remote	file	system	you	will	be	accessing.	You	tell	the
server	exactly	in	which	directory	you	want	the	upload	to	be	placed	and	which	file	name	to
use.	If	you	specify	the	upload	URL	with	a	trailing	slash,	curl	will	append	the	locally	used	file
name	to	the	URL	and	then	that	will	be	the	file	name	used	when	stored	remotely:

curl	-T	uploadthis	ftp://example.com/this/directory/

So	if	you	prefer	to	select	a	different	file	name	on	the	remote	side	than	what	you	have	used
locally,	you	specify	it	in	the	URL:

curl	-T	uploadthis	ftp://example.com/this/directory/remotename

Learn	more	about	FTPing	with	curl	in	the	Using	curl/FTP	section.

SMTP	uploads

You	may	not	consider	sending	an	e-mail	to	be	"uploading",	but	to	curl	it	is.	You	upload	the
mail	body	to	the	SMTP	server.	With	SMTP,	you	also	need	to	include	all	the	e-mail	headers
you	need	(To:,	From:,	Date:,	etc.)	in	the	mail	body	as	curl	will	not	add	any	at	all.

curl	-T	mail	smtp://mail.example.com/	--mail-from	user@example.com

Learn	more	about	using	SMTP	with	curl	in	the	Using	curl/SMTP	section.

Uploads

108

Progress	meter	for	uploads

The	general	progress	meter	curl	provides	(see	the	Progress	meter	section)	works	fine	for
uploads	as	well.	What	needs	to	be	remembered	is	that	the	progress	meter	is	automatically
disabled	when	you	are	sending	output	to	stdout,	and	most	protocols	curl	support	can	output
something	even	for	an	upload.

Therefore,	you	may	need	to	explicitly	redirect	the	downloaded	data	to	a	file	(using	shell
redirect	'>',		-o		or	similar)	to	get	the	progress	meter	displayed	for	upload.

Rate	limiting

Rate	limiting	works	exactly	the	same	for	uploads	as	for	downloads	and	curl,	in	fact,	only	has
a	single	limit	that	will	limit	the	speed	in	both	directions.

See	further	details	in	the	Download	Rate	limiting	section.

Uploads

109

Connections
Most	of	the	protocols	you	use	with	curl	speak	TCP.	With	TCP,	a	client	such	as	curl	must	first
figure	out	the	IP	address(es)	of	the	host	you	want	to	communicate	with,	then	connect	to	it.
"Connecting	to	it"	means	performing	a	TCP	protocol	handshake.

For	ordinary	command	line	usage,	operating	on	a	URL,	these	are	details	which	are	taken
care	of	under	the	hood,	and	which	you	can	mostly	ignore.	But	at	times	you	might	find
yourself	wanting	to	tweak	the	specifics…

Name	resolve	tricks

Edit	the	hosts	file

Maybe	you	want	the	command		curl	http://example.com		to	connect	to	your	local	server
instead	of	the	actual	server.

You	can	normally	and	easily	do	that	by	editing	your		hosts		file	(/etc/hosts		on	Linux	and
Unix	systems)	and	adding,	for	example,		127.0.0.1	example.com		to	redirect	the	host	to	your
localhost.	However	this	edit	requires	admin	access	and	it	has	the	downside	that	it	affects	all
other	applications	at	the	same	time.

Change	the	Host:	header

The		Host:		header	is	the	normal	way	an	HTTP	client	tells	the	HTTP	server	which	server	it
speaks	to,	as	typically	an	HTTP	server	serves	many	different	names	using	the	same
software	instance.

So,	by	passing	in	a	custom	modified		Host:		header	you	can	have	the	server	respond	with
the	contents	of	the	site	even	when	you	didn't	actually	connect	to	that	host	name.

For	example,	you	run	a	test	instance	of	your	main	site		www.example.com		on	your	local
machine	and	you	want	to	have	curl	ask	for	the	index	html:

curl	-H	"Host:	www.example.com"	http://localhost/

When	setting	a	custom		Host:		header	and	using	cookies,	curl	will	extract	the	custom	name
and	use	that	as	host	when	matching	cookies	to	send	off.

Connections

110

The		Host:		header	is	not	enough	when	communicating	with	an	HTTPS	server.	With	HTTPS
there's	a	separate	extension	field	in	the	TLS	protocol	called	SNI	(Server	Name	Indication)
that	lets	the	client	tell	the	server	the	name	of	the	server	it	wants	to	talk	to.	curl	will	only
extract	the	SNI	name	to	send	from	the	given	URL.

Provide	a	custom	IP	address	for	a	name

Do	you	know	better	than	the	name	resolver	where	curl	should	go?	Then	you	can	give	an	IP
address	to	curl	yourself!	If	you	want	to	redirect	port	80	access	for		example.com		to	instead
reach	your	localhost:

curl	--resolve	example.com:80:127.0.0.1	http://example.com/

You	can	even	specify	multiple		--resolve		switches	to	provide	multiple	redirects	of	this	sort,
which	can	be	handy	if	the	URL	you	work	with	uses	HTTP	redirects	or	if	you	just	want	to	have
your	command	line	work	with	multiple	URLs.

	--resolve		inserts	the	address	into	curl's	DNS	cache,	so	it	will	effectively	make	curl	believe
that's	the	address	it	got	when	it	resolved	the	name.

When	talking	HTTPS,	this	will	send	SNI	for	the	name	in	the	URL	and	curl	will	verify	the
server's	response	to	make	sure	it	serves	for	the	name	in	the	URL.

Provide	a	replacement	name

As	a	close	relative	to	the		--resolve		option,	the		--connect-to		option	provides	a	minor
variation.	It	allows	you	to	specify	a	replacement	name	and	port	number	for	curl	to	use	under
the	hood	when	a	specific	name	and	port	number	is	used	to	connect.

For	example,	suppose	you	have	a	single	site	called		www.example.com		that	in	turn	is	actually
served	by	three	different	individual	HTTP	servers:	load1,	load2	and	load3,	for	load	balancing
purposes.	In	a	typical	normal	procedure,	curl	resolves	the	main	site	and	gets	to	speak	to	one
of	the	load	balanced	servers	(as	it	gets	a	list	back	and	just	picks	one	of	them)	and	all	is	well.
If	you	want	to	send	a	test	request	to	one	specific	server	out	of	the	load	balanced	set
(load1.example.com		for	example)	you	can	instruct	curl	to	do	that.

You	can	still	use		--resolve		to	accomplish	this	if	you	know	the	specific	IP	address	of	load1.
But	without	having	to	first	resolve	and	fix	the	IP	address	separately,	you	can	tell	curl:

curl	--connect-to	www.example.com:80:load1.example.com:80	http://www.example.com

Connections

111

It	redirects	from	a	SOURCE	NAME	+	SOURCE	PORT	to	a	DESTINATION	NAME	+
DESTINATION	PORT.	curl	will	then	resolve	the		load1.example.com		name	and	connect,	but
in	all	other	ways	still	assume	it	is	talking	to		www.example.com	.

Name	resolve	tricks	with	c-ares

As	should	be	detailed	elsewhere	in	this	book,	curl	may	be	built	with	several	different	name
resolving	backends.	One	of	those	backends	is	powered	by	the	c-ares	library	and	when	curl
is	built	to	use	c-ares,	it	gets	a	few	extra	superpowers	that	curl	built	to	use	other	name
resolve	backends	don't	get.	Namely,	it	gains	the	ability	to	more	specifically	instruct	what
DNS	servers	to	use	and	how	that	DNS	traffic	is	using	the	network.

With		--dns-servers	,	you	can	specify	exactly	which	DNS	server	curl	should	use	instead	of
the	default	one.	This	lets	you	run	your	own	experimental	server	that	answers	differently,	or
use	a	backup	one	if	your	regular	one	is	unreliable	or	dead.

With		--dns-ipv4-addr		and		--dns-ipv6-addr		you	ask	curl	to	"bind"	its	local	end	of	the	DNS
communication	to	a	specific	IP	address	and	with		--dns-interface		you	can	instruct	curl	to
use	a	specific	network	interface	to	use	for	its	DNS	requests.

These		--dns-*		options	are	very	advanced	and	are	only	meant	for	people	who	know	what
they	are	doing	and	understand	what	these	options	do.	But	they	offer	very	customizable	DNS
name	resolution	operations.

Connection	timeout
curl	will	typically	make	a	TCP	connection	to	the	host	as	an	initial	part	of	its	network	transfer.
This	TCP	connection	can	fail	or	be	very	slow,	if	there	are	shaky	network	conditions	or	faulty
remote	servers.

To	reduce	the	impact	on	your	scripts	or	other	use,	you	can	set	the	maximum	time	in	seconds
which	curl	will	allow	for	the	connection	attempt.	With		--connnect-timeout		you	tell	curl	the
maximum	time	to	allow	for	connecting,	and	if	curl	has	not	connected	in	that	time	it	returns	a
failure.

The	connection	timeout	only	limits	the	time	curl	is	allowed	to	spend	up	until	the	moment	it
connects,	so	once	the	TCP	connection	has	been	established	it	can	take	longer	time.	See	the
Timeouts	section	for	more	on	generic	curl	timeouts.

If	you	specify	a	low	timeout,	you	effectively	disable	curl's	ability	to	connect	to	remote	servers,
slow	servers	or	servers	you	access	over	unreliable	networks.

Connections

112

The	connection	timeout	can	be	specified	as	a	decimal	value	for	sub-second	precision.	For
example,	to	allow	2781	milliseconds	to	connect:

curl	--connnect-timeout	2.781	https://example.com/

Network	interface
On	machines	with	multiple	network	interfaces	that	are	connected	to	multiple	networks,	there
are	situations	where	you	can	decide	which	network	interface	you	would	prefer	the	outgoing
network	traffic	to	use.	Or	which	originating	IP	address	(out	of	the	multiple	ones	you	have)	to
use	in	the	communication.

Tell	curl	which	network	interface,	which	IP	address	or	even	host	name	that	you	would	like	to
"bind"	your	local	end	of	the	communication	to,	with	the		--interface		option:

curl	--interface	eth1	https://www.example.com/

curl	--interface	192.168.0.2	https://www.example.com/

curl	--interface	machine2	https://www.example.com/

Local	port	number
A	TCP	connection	is	created	between	an	IP	address	and	a	port	number	in	the	local	end	and
an	IP	address	and	a	port	number	in	the	remote	end.	The	remote	port	number	can	be
specified	in	the	URL	and	usually	helps	identify	which	service	you	are	targeting.

The	local	port	number	is	usually	randomly	assigned	to	your	TCP	connection	by	the	network
stack	and	you	normally	don't	have	to	think	about	it	much	further.	However,	in	some
circumstances	you	find	yourself	behind	network	equipment,	firewalls	or	similar	setups	that
put	restrictions	on	what	source	port	numbers	that	can	be	allowed	to	set	up	the	outgoing
connections.

For	situations	like	this,	you	can	specify	which	local	ports	curl	should	bind	the	the	connection
to.	You	can	specify	a	single	port	number	to	use,	or	a	range	of	ports.	We	recommend	using	a
range	because	ports	are	scarce	resources	and	the	exact	one	you	want	may	already	be	in
use.	If	you	ask	for	a	local	port	number	(or	range)	that	curl	can't	obtain	for	you,	it	will	exit	with
a	failure.

Connections

113

Also,	on	most	operating	systems	you	cannot	bind	to	port	numbers	below	1024	without
having	a	higher	privilege	level	(root)	and	we	generally	advise	against	running	curl	as	root	if
you	can	avoid	it.

Ask	curl	to	use	a	local	port	number	between	4000	and	4200	when	getting	this	HTTPS	page:

curl	--local-port	4000-4200	https://example.com/

Keep	alive
TCP	connections	can	be	totally	without	traffic	in	either	direction	when	they	are	not	used.	A
totally	idle	connection	can	therefore	not	be	clearly	separated	from	a	connection	that	has
gone	completely	stale	because	of	network	or	server	issues.

At	the	same	time,	lots	of	network	equipments	such	as	firewalls	or	NATs	are	keeping	track	of
TCP	connections	these	days,	so	that	they	can	translate	addresses,	block	"wrong"	incoming
packets,	etc.	These	devices	often	count	completely	idle	connections	as	dead	after	N
minutes,	where	N	varies	between	device	to	device	but	at	times	is	as	short	as	10	minutes	or
even	less.

One	way	to	help	avoid	a	really	slow	connection	(or	an	idle	one)	getting	treated	as	dead	and
wrongly	killed,	is	to	make	sure	TCP	keep	alive	is	used.	TCP	keepalive	is	a	feature	in	the
TCP	protocol	that	makes	it	send	"ping	frames"	back	and	forth	when	it	would	otherwise	be
totally	idle.	It	helps	idle	connections	to	detect	breakage	even	when	no	traffic	is	moving	over
it,	and	helps	intermediate	systems	not	consider	the	connection	dead.

curl	uses	TCP	keepalive	by	default	for	the	reasons	mentioned	here.	But	there	might	be	times
when	you	want	to	disable	keepalive	or	you	may	want	to	change	the	interval	between	the
TCP	"pings"	(curl	defaults	to	60	seconds).	You	can	switch	off	keepalive	with:

curl	--no-keepalive	https://example.com/

or	change	the	interval	to	5	minutes	(300	seconds)	with:

curl	--keepalive-time	300	https://example.com/

Connections

114

Timeouts
Network	operations	are	by	their	nature	rather	unreliable	or	perhaps	fragile	operations	as
they	depend	on	a	set	of	services	and	networks	to	be	up	and	working	for	things	to	work.	The
availability	of	these	services	can	come	and	go	and	the	performance	of	them	may	also	vary
greatly	from	time	to	time.

The	design	of	TCP	even	allows	the	network	to	get	completely	disconnected	for	an	extended
period	of	time	without	it	necessarily	getting	noticed	by	the	participants	in	the	transfer.

The	result	of	this	is	that	sometimes	Internet	transfers	take	a	very	long	time.	Further,	most
operations	in	curl	have	no	time-out	by	default!

Maximum	time	allowed	to	spend
Tell	curl	with		-m	/	--max-time		the	maximum	time,	in	seconds,	that	you	allow	the	command
line	to	spend	before	curl	exits	with	a	timeout	error	code	(28).	When	the	set	time	has	elapsed,
curl	will	exit	no	matter	what	is	going	on	at	that	moment—including	if	it	is	transferring	data.	It
really	is	the	maximum	time	allowed.

The	given	maximum	time	can	be	specified	with	a	decimal	precision;		0.5		means	500
milliseconds	and		2.37		equals	2370	milliseconds.

Example:

curl	--max-time	5.5	https://example.com/

Never	spend	more	than	this	to	connect
	--connect-timeout		limits	the	time	curl	will	spend	trying	to	connect	to	the	host.	All	the
necessary	steps	done	before	the	connection	is	considered	complete	have	to	be	completed
within	the	given	time	frame.	Failing	to	connect	within	the	given	time	will	cause	curl	to	exit
with	a	timeout	exit	code	(28).

The	given	maximum	connect	time	can	be	specified	with	a	decimal	precision;		0.5		means
500	milliseconds	and		2.37		equals	2370	milliseconds:

curl	--connect-timeout	2.37	https://example.com/

Timeouts

115

Transfer	speeds	slower	than	this	means	exit
Having	a	fixed	maximum	time	for	a	curl	operation	can	be	cumbersome,	especially	if	you,	for
example,	do	scripted	transfers	and	the	file	sizes	and	transfer	times	vary	a	lot.	A	fixed	timeout
value	then	needs	to	be	set	unnecessarily	high	to	cover	for	worst	cases.

As	an	alternative	to	a	fixed	time-out,	you	can	tell	curl	to	abandon	the	transfer	if	it	gets	below
a	certain	speed	and	stays	below	that	threshold	for	a	specific	period	of	time.

For	example,	if	a	transfer	speed	goes	below	1000	bytes	per	second	during	15	seconds,	stop
it:

curl	--speed-time	15	--speed-limit	1000	https://example.com/

Keep	connections	alive
curl	enables	TCP	keep-alive	by	default.	TCP	keep-alive	is	a	feature	that	makes	the	TCP
stack	send	a	probe	to	the	other	side	when	there's	no	traffic,	to	make	sure	that	it	is	still	there
and	"alive".	By	using	keep-alive,	curl	is	much	more	likely	to	discover	that	the	TCP
connection	is	dead.

Use		--keepalive-time		to	specify	how	often	in	full	seconds	you	would	like	the	probe	to	get
sent	to	the	peer.	The	default	value	is	usually	set	to	7200,	which	is	two	full	hours.

Sometimes	this	probing	disturbs	what	you	are	doing	and	then	you	can	easily	disable	it	with
	--no-keepalive	.

Timeouts

116

.netrc
Unix	systems	have	for	a	very	long	time	offered	a	way	for	users	to	store	their	user	name	and
password	for	remote	FTP	servers.	ftp	clients	have	supported	this	for	decades	and	this	way
allowed	users	to	quickly	login	to	known	servers	without	manually	having	to	reenter	the
credentials	each	time.	The		.netrc		file	is	typically	stored	in	a	user's	home	directory.	(On
Windows,	curl	will	look	for	it	with	the	name		_netrc).

This	being	a	widespread	and	well	used	concept,	curl	also	supports	it—if	you	ask	it	to.	curl
does	not,	however,	limit	this	feature	to	FTP,	but	can	get	credentials	for	machines	for	any
protocol	with	this.	See	further	below	for	how.

The	.netrc	file	format

The	.netrc	file	format	is	simple:	you	specify	lines	with	a	machine	name	and	follow	that	with
lines	for	the	login	and	password	that	are	associated	with	that	machine.

machine	name

Identifies	a	remote	machine	name.	curl	searches	the	.netrc	file	for	a	machine	token	that
matches	the	remote	machine	specified	in	the	URL.	Once	a	match	is	made,	the	subsequent
.netrc	tokens	are	processed,	stopping	when	the	end	of	file	is	reached	or	another	machine	is
encountered.

login	name

The	user	name	string	for	the	remote	machine.

password	string

Supply	a	password.	If	this	token	is	present,	curl	will	supply	the	specified	string	if	the	remote
server	requires	a	password	as	part	of	the	login	process.	Note	that	if	this	token	is	present	in
the	.netrc	file	you	really	should	make	sure	the	file	is	not	readable	by	anyone	besides	the
user.

An	example	.netrc	for	the	host	example.com	with	a	user	named	'daniel',	using	the	password
'qwerty'	would	look	like:

machine	example.com

login	daniel

password	qwerty

.netrc

117

Enable	netrc

	-n,	--netrc		tells	curl	to	look	for	and	use	the	.netrc	file.

	--netrc-file	[file]		is	similar	to		--netrc	,	except	that	you	also	provide	the	path	to	the
actual	file	to	use.	This	is	useful	when	you	want	to	provide	the	information	in	another	directory
or	with	another	file	name.

	--netrc-optional		is	similar	to		--netrc	,	but	this	option	makes	the	.netrc	usage	optional	and
not	mandatory	as	the		--netrc		option.

.netrc

118

Proxies
A	proxy	is	a	machine	or	software	that	does	something	on	behalf	of	you,	the	client.

You	can	also	see	it	as	a	middle	man	that	sits	between	you	and	the	server	you	want	to	work
with,	a	middle	man	that	you	connect	to	instead	of	the	actual	remote	server.	You	ask	the
proxy	to	perform	your	desired	operation	for	you	and	then	it	will	run	off	and	do	that	and	then
return	back	the	data	to	you.

There	are	several	different	types	of	proxies	and	we	shall	list	and	discuss	them	further	down
in	this	section.

Discover	your	proxy

Some	networks	are	setup	to	require	a	proxy	in	order	for	you	to	reach	the	Internet	or	perhaps
that	special	network	you	are	interested	in.	The	use	of	proxies	are	introduced	on	your
network	by	the	people	and	management	that	run	your	network	for	policy	or	technical
reasons.

In	the	networking	space	there	are	a	few	methods	for	the	automatic	detection	of	proxies	and
how	to	connect	to	them,	but	none	of	those	methods	are	truly	universal	and	curl	supports
none	of	them.	Furthermore,	when	you	communicate	to	the	outside	world	through	a	proxy
that	often	means	that	you	have	to	put	a	lot	of	trust	on	the	proxy	as	it	will	be	able	to	see	and
modify	all	the	non-secure	network	traffic	you	send	or	get	through	it.	That	trust	is	not	easy	to
assume	automatically.

If	you	check	your	browser's	network	settings,	sometimes	under	an	advanced	settings	tab,
you	can	learn	what	proxy	or	proxies	your	browser	is	configured	to	use.	Chances	are	very	big
that	you	should	use	the	same	one	or	ones	when	you	use	curl.

TBD:	screenshots	of	how	to	find	proxy	settings	in	Firefox	and	Chrome?

PAC

Some	network	environments	provides	several	different	proxies	that	should	be	used	in
different	situations,	and	a	very	customizable	way	to	handle	that	is	supported	by	the
browsers.	This	is	called	"proxy	auto-config",	or	PAC.

A	PAC	file	contains	a	JavaScript	function	that	decides	which	proxy	a	given	network
connection	(URL)	should	use,	and	even	if	it	should	not	use	a	proxy	at	all.	Browsers	most
typically	read	the	PAC	file	off	a	URL	on	the	local	network.

Proxies

119

Since	curl	has	no	JavaScript	capabilities,	curl	doesn't	support	PAC	files.	If	your	browser	and
network	use	PAC	files,	the	easiest	route	forward	is	usually	to	read	the	PAC	file	manually	and
figure	out	the	proxy	you	need	to	specify	to	run	curl	successfully.

Captive	portals

(these	aren't	proxies	but	in	the	way)

TBD

Proxy	type

curl	supports	several	different	types	of	proxies.

The	default	proxy	type	is	HTTP	so	if	you	specify	a	proxy	host	name	(or	IP	address)	without	a
scheme	part	(the	part	that	is	often	written	as	"http://")	curl	goes	with	assuming	it's	an	HTTP
proxy.

curl	also	allows	a	number	of	different	options	to	set	the	proxy	type	instead	of	using	the
scheme	prefix.	See	the	SOCKS	section	below.

HTTP

An	HTTP	proxy	is	a	proxy	that	the	client	speaks	HTTP	with	to	get	the	transfer	done.	curl	will,
by	default,	assume	that	a	host	you	point	out	with		-x		or		--proxy		is	an	HTTP	proxy,	and
unless	you	also	specify	a	port	number	it	will	default	to	port	3128	(and	the	reason	for	that
particular	port	number	is	purely	historical).

If	you	want	to	request	the	example.com	web	page	using	a	proxy	on	192.168.0.1	port	8080,	a
command	line	could	look	like:

curl	-x	192.168.0.1:8080	http:/example.com/

Recall	that	the	proxy	receives	your	request,	forwards	it	to	the	real	server,	then	reads	the
response	from	the	server	and	then	hands	that	back	to	the	client.

If	you	enable	verbose	mode	with		-v		when	talking	to	a	proxy,	you	will	see	that	curl	connects
to	the	proxy	instead	of	the	remote	server,	and	you	will	see	that	it	uses	a	slightly	different
request	line.

HTTPS	and	proxy

Proxies

120

HTTPS	was	designed	to	allow	and	provide	secure	and	safe	end-to-end	privacy	from	the
client	to	the	server	(and	back).	In	order	to	provide	that	when	speaking	to	an	HTTP	proxy,	the
HTTP	protocol	has	a	special	request	that	curl	uses	to	setup	a	tunnel	through	the	proxy	that	it
then	can	encrypt	and	verify.	This	HTTP	method	is	known	as		CONNECT	.

When	the	proxy	tunnels	encrypted	data	through	to	the	remote	server	after	a	CONNECT
method	sets	it	up,	the	proxy	cannot	see	nor	modify	the	traffic	without	breaking	the
encryption:

curl	-x	proxy.example.com:80	https://example.com/

MITM-proxies

MITM	means	Man-In-The-Middle.	MITM-proxies	are	usually	deployed	by	companies	in
"enterprise	environments"	and	elsewhere,	where	the	owners	of	the	network	have	a	desire	to
investigate	even	TLS	encrypted	traffic.

To	do	this,	they	require	users	to	install	a	custom	"trust	root"	(CA	cert)	in	the	client,	and	then
the	proxy	terminates	all	TLS	traffic	from	the	client,	impersonates	the	remote	server	and	acts
like	a	proxy.	The	proxy	then	sends	back	a	generated	certificate	signed	by	the	custom	CA.
Such	proxy	setups	usually	transparently	capture	all	traffic	from	clients	to	TCP	port	443	on	a
remote	machine.	Running	curl	in	such	a	network	would	also	get	its	HTTPS	traffic	captured.

This	practice,	of	course,	allows	the	middle	man	to	decrypt	and	snoop	on	all	TLS	traffic.

Non-HTTP	protocols	over	an	HTTP	proxy

An	"HTTP	proxy"	means	the	proxy	itself	speaks	HTTP.	HTTP	proxies	are	primarily	used	to
proxy	HTTP	but	it	is	also	fairly	common	that	they	support	other	protocols	as	well.	In
particular,	FTP	is	fairly	commonly	supported.

When	talking	FTP	"over"	an	HTTP	proxy,	it	is	usually	done	by	more	or	less	pretending	the
other	protocol	works	like	HTTP	and	asking	the	proxy	to	"get	this	URL"	even	if	the	URL	isn't
using	HTTP.	This	distinction	is	important	because	it	means	that	when	sent	over	an	HTTP
proxy	like	this,	curl	doesn't	really	speak	FTP	even	though	given	an	FTP	URL;	thus	FTP-
specific	features	will	not	work:

curl	-x	http://proxy.example.com:80	ftp://ftp.example.com/file.txt

What	you	can	do	instead	then,	is	to	"tunnel	through"	the	HTTP	proxy!

HTTP	proxy	tunneling

Proxies

121

Most	HTTP	proxies	allow	clients	to	"tunnel	through"	it	to	a	server	on	the	other	side.	That's
exactly	what's	done	every	time	you	use	HTTPS	through	the	HTTP	proxy.

You	tunnel	through	an	HTTP	proxy	with	curl	using		-p		or		--proxytunnel	.

When	you	do	HTTPS	through	a	proxy	you	normally	connect	through	to	the	default	HTTPS
remote	TCP	port	number	443,	so	therefore	you	will	find	that	most	HTTP	proxies	white	list
and	allow	connections	only	to	hosts	on	that	port	number	and	perhaps	a	few	others.	Most
proxies	will	deny	clients	from	connecting	to	just	any	random	port	(for	reasons	only	the	proxy
administrators	know).

Still,	assuming	that	the	HTTP	proxy	allows	it,	you	can	ask	it	to	tunnel	through	to	a	remote
server	on	any	port	number	so	you	can	do	other	protocols	"normally"	even	when	tunneling.
You	can	do	FTP	tunneling	like	this:

curl	-p	-x	http://proxy.example.com:80	ftp://ftp.example.com/file.txt

You	can	tell	curl	to	use	HTTP/1.0	in	its	CONNECT	request	issued	to	the	HTTP	proxy	by
using		--proxy1.0	[proxy]		instead	of		-x	.

SOCKS	types

SOCKS	is	a	protocol	used	for	proxies	and	curl	supports	it.	curl	supports	both	SOCKS
version	4	as	well	as	version	5,	and	both	versions	come	in	two	flavors.

You	can	select	the	specific	SOCKS	version	to	use	by	using	the	correct	scheme	part	for	the
given	proxy	host	with		-x	,	or	you	can	specify	it	with	a	separate	option	instead	of		-x	.

SOCKS4	is	for	the	version	4	and	SOCKS4a	is	for	the	version	4	without	resolving	the	host
name	locally:

curl	-x	socks4://proxy.example.com	http://www.example.com/

curl	--socks4	proxy.example.com	http://www.example.com/

The	SOCKS4a	versions:

curl	-x	socks4a://proxy.example.com	http://www.example.com/

curl	--socks4a	proxy.example.com	http://www.example.com/

SOCKS5	is	for	the	version	5	and	SOCKS5-hostname	is	for	the	version	5	without	resolving
the	host	name	locally:

Proxies

122

curl	-x	socks5://proxy.example.com	http://www.example.com/

curl	--socks5	proxy.example.com	http://www.example.com/

The	SOCKS5-hostname	versions.	This	sends	the	host	name	to	the	server	so	there's	no
name	resolving	done	locally:

curl	-x	socks5h://proxy.example.com	http://www.example.com/

curl	--socks5-hostname	proxy.example.com	http://www.example.com/

Proxy	authentication

HTTP	proxies	can	require	authentication,	so	curl	then	needs	to	provide	the	proper
credentials	to	the	proxy	to	be	allowed	to	use	it,	and	failing	to	do	will	only	make	the	proxy
return	back	HTTP	responses	using	code	407.

Authentication	for	proxies	is	very	similar	to	"normal"	HTTP	authentication,	but	is	separate
from	the	server	authentication	to	allow	clients	to	independently	use	both	normal	host
authentication	as	well	as	proxy	authentication.

With	curl,	you	set	the	user	name	and	password	for	the	proxy	authentication	with	the		-U
user:password		or		--proxy-user	user:password		option:

curl	-U	daniel:secr3t	-x	myproxy:80	http://example.com

This	example	will	default	to	using	the	Basic	authentication	scheme.	Some	proxies	will
require	another	authentication	scheme	(and	the	headers	that	are	returned	when	you	get	a
407	response	will	tell	you	which)	and	then	you	can	ask	for	a	specific	method	with		--proxy-
digest	,		--proxy-negotiate	,		--proxy-ntlm	.	The	above	example	command	again,	but	asking
for	NTLM	auth	with	the	proxy:

curl	-U	daniel:secr3t	-x	myproxy:80	http://example.com	--proxy-ntlm

There's	also	the	option	that	asks	curl	to	figure	out	which	method	the	proxy	wants	and
supports	and	then	go	with	that	(with	the	possible	expense	of	extra	roundtrips)	using		--
proxy-anyauth	.	Asking	curl	to	use	any	method	the	proxy	wants	is	then	like	this:

curl	-U	daniel:secr3t	-x	myproxy:80	http://example.com	--proxy-anyauth

Proxies

123

HTTPS	to	proxy

All	the	previously	mentioned	protocols	to	speak	with	the	proxy	are	clear	text	protocols,	HTTP
and	the	SOCKS	versions.	Using	these	methods	could	allow	someone	to	eavesdrop	on	your
traffic	the	local	network	where	you	or	the	proxy	reside.

One	solution	for	that	is	to	use	HTTPS	to	the	proxy,	which	then	establishes	a	secure	and
encrypted	connection	that	is	safe	from	easy	surveillance.

curl	does	not	currently	support	HTTPS	to	the	proxy,	but	there	is	work	in	progress	for	this	that
we	hope	to	land	in	a	future	curl	version.

Proxy	environment	variables

curl	checks	for	the	existence	of	specially-named	environment	variables	before	it	runs	to	see
if	a	proxy	is	requested	to	get	used.

You	specify	the	proxy	by	setting	a	variable	named		[scheme]_proxy		to	hold	the	proxy	host
name	(the	same	way	you	would	specify	the	host	with		-x).	So	if	you	want	to	tell	curl	to	use
a	proxy	when	access	a	HTTP	server,	you	set	the	'http_proxy'	environment	variable.	Like	this:

http_proxy=http://proxy.example.com:80

curl	-v	www.example.com

While	the	above	example	shows	HTTP,	you	can,	of	course,	also	set	ftp_proxy,	https_proxy,
and	so	on.	All	these	proxy	environment	variable	names	except	http_proxy	can	also	be
specified	in	uppercase,	like	HTTPS_PROXY.

To	set	a	single	variable	that	controls	all	protocols,	the	ALL_PROXY	exists.	If	a	specific
protocol	variable	one	exists,	such	a	one	will	take	precedence.

When	using	environment	variables	to	set	a	proxy,	you	could	easily	end	up	in	a	situation
where	one	or	a	few	host	names	should	be	excluded	from	going	through	the	proxy.	This	is
then	done	with	the	NO_PROXY	variable.	Set	that	to	a	comma-	separated	list	of	host	names
that	should	not	use	a	proxy	when	being	accessed.	You	can	set	NO_PROXY	to	be	a	single
asterisk	('*')	to	match	all	hosts.

As	an	alternative	to	the	NO_PROXY	variable,	there's	also	a		--noproxy		command	line
option	that	serves	the	same	purpose	and	works	the	same	way.

Proxy	headers

--proxy-header

Proxies

124

TBD

Proxies

125

Exit	status
A	lot	of	effort	has	gone	into	the	project	to	make	curl	return	a	usable	exit	code	when
something	goes	wrong	and	it	will	always	return	0	(zero)	when	the	operation	went	as
planned.

If	you	write	a	shell	script	or	batch	file	that	invokes	curl,	you	can	always	check	the	return	code
to	detect	problems	in	the	invoked	command.	Below,	you	will	find	a	list	of	return	codes	as	of
the	time	of	this	writing.	Over	time	we	tend	to	slowly	add	new	ones	so	if	you	get	a	code	back
not	listed	here,	please	refer	to	more	updated	curl	documentation	for	aid.

A	very	basic	Unix	shell	script	could	look	like	something	like	this:

#!/bin/sh

curl	http://example.com

res=$?

if	test	"$res"	!=	"0";	then

			echo	"the	curl	command	failed	with:	$res"

fi

Available	exit	codes
1.	 Unsupported	protocol.	This	build	of	curl	has	no	support	for	this	protocol.	Usually	this

happens	because	the	URL	was	misspelled	to	use	a	scheme	part	that	either	as	a	space
in	front	of	it	or	spells	"http"	like	"htpt"	or	similar.	Another	common	mistake	is	that	you	use
a	libcurl	installation	that	was	built	with	one	or	more	protocols	disabled	and	you	now	ask
libcurl	to	use	one	of	those	protocols	that	were	disabled	in	the	build.

2.	 Failed	to	initialize.	This	is	mostly	an	internal	error	or	a	problem	with	the	libcurl
installation	or	system	libcurl	runs	in.

3.	 URL	malformed.	The	syntax	was	not	correct.	This	happens	when	you	mistype	a	URL	so
that	it	ends	up	wrong,	or	in	rare	situations	you	are	using	a	URL	that	is	accepted	by
another	tool	that	curl	doesn't	support	only	because	there	is	no	universal	URL	standard
that	everyone	adheres	to.

4.	 A	feature	or	option	that	was	needed	to	perform	the	desired	request	was	not	enabled	or
was	explicitly	disabled	at	build-time.	To	make	curl	able	to	do	this,	you	probably	need
another	build	of	libcurl!

Exit	status

126

5.	 Couldn't	resolve	proxy.	The	address	of	the	given	proxy	host	could	not	be	resolved.
Either	the	given	proxy	name	is	just	wrong,	or	the	DNS	server	is	misbehaving	and
doesn't	know	about	this	name	when	it	should	or	perhaps	even	the	system	you	run	curl
on	is	misconfigured	so	that	it	doesn't	find/use	the	correct	DNS	server.

6.	 Couldn't	resolve	host.	The	given	remote	host's	address	was	not	resolved.	The	address
of	the	given	server	could	not	be	resolved.	Either	the	given	host	name	is	just	wrong,	or
the	DNS	server	is	misbehaving	and	doesn't	know	about	this	name	when	it	should	or
perhaps	even	the	system	you	run	curl	on	is	misconfigured	so	that	it	doesn't	find/use	the
correct	DNS	server.

7.	 Failed	to	connect	to	host.	curl	managed	to	get	an	IP	address	to	the	machine	and	it	tried
to	setup	a	TCP	connection	to	the	host	but	failed.	This	can	be	because	you	have
specified	the	wrong	port	number,	entered	the	wrong	host	name,	the	wrong	protocol	or
perhaps	because	there	is	a	firewall	or	another	network	equipment	in	between	that
blocks	the	traffic	from	getting	through.

8.	 Unknown	FTP	server	response.	The	server	sent	data	curl	couldn't	parse.	This	is	either
because	of	a	bug	in	curl,	a	bug	in	the	server	or	because	the	server	is	using	an	FTP
protocol	extension	that	curl	doesn't	support.	The	only	real	work-around	for	this	is	to
tweak	curl	options	to	try	it	to	use	other	FTP	commands	that	perhaps	won't	get	this
unknown	server	response	back.

9.	 FTP	access	denied.	The	server	denied	login	or	denied	access	to	the	particular	resource
or	directory	you	wanted	to	reach.	Most	often	you	tried	to	change	to	a	directory	that
doesn't	exist	on	the	server.	The	directory	of	course	is	what	you	specify	in	the	URL.

10.	 FTP	accept	failed.	While	waiting	for	the	server	to	connect	back	when	an	active	FTP
session	is	used,	an	error	code	was	sent	over	the	control	connection	or	similar.

11.	 FTP	weird	PASS	reply.	Curl	couldn't	parse	the	reply	sent	to	the	PASS	request.	PASS	in
the	command	curl	sends	the	password	to	the	server	with,	and	even	anonymous
connections	to	FTP	server	actually	sends	a	password	-	a	fixed	anonymous	string.
Getting	a	response	back	from	this	command	that	curl	doesn't	understand	is	a	strong
indication	that	this	isn't	an	FTP	server	at	all	or	that	the	server	is	badly	broken.

12.	 During	an	active	FTP	session	(PORT	is	used)	while	waiting	for	the	server	to	connect,
the	timeout	expired.	It	took	too	long	for	the	server	to	get	back.	This	is	usually	a	sign	that
something	is	preventing	the	server	from	reaching	curl	successfully.	Like	a	firewall	or
other	network	arrangements.	.

13.	 Unknown	response	to	FTP	PASV	command,	Curl	couldn't	parse	the	reply	sent	to	the
PASV	request.	This	is	a	strange	server.	PASV	is	used	to	setup	the	second	data	transfer
connection	in	passive	mode,	see	the	FTP	uses	two	connections	section	for	more	on

Exit	status

127

that.	You	might	be	able	to	work-around	this	problem	by	using	PORT	instead,	with	the		-
-ftp-port		option.

14.	 Unknown	FTP	227	format.	Curl	couldn't	parse	the	227-line	the	server	sent.	This	is	most
certainly	a	broken	server.	A	227	is	the	FTP	server's	response	when	sending	back
information	on	how	curl	should	connect	back	to	it	in	passive	mode.	You	might	be	able	to
work-around	this	problem	by	using	PORT	instead,	with	the		--ftp-port		option.

15.	 FTP	can't	get	host.	Couldn't	use	the	host	IP	address	we	got	in	the	227-line.	This	is	most
likely	an	internal	error!

16.	 HTTP/2	error.	A	problem	was	detected	in	the	HTTP2	framing	layer.	This	is	somewhat
generic	and	can	be	one	out	of	several	problems,	see	the	error	message	for	details.

17.	 FTP	couldn't	set	binary.	Couldn't	change	transfer	method	to	binary.	This	server	is
broken.	curl	needs	to	set	the	transfer	to	the	correct	mode	before	it	is	started	as
otherwise	the	transfer	can't	work.

18.	 Partial	file.	Only	a	part	of	the	file	was	transferred.	When	the	transfer	is	considered
complete,	curl	will	verify	that	it	actually	received	the	same	amount	of	data	that	it	was
told	before-hand	that	it	was	going	to	get.	If	the	two	numbers	don't	match,	this	is	the	error
code.	It	could	mean	that	curl	got	fewer	bytes	than	advertised	or	that	it	got	more.	curl
itself	cannot	know	which	number	that	is	wrong	or	which	is	correct.	If	any.

19.	 FTP	couldn't	download/access	the	given	file.	The	RETR	(or	similar)	command	failed.
curl	got	an	error	from	the	server	when	trying	to	download	the	file.

20.	 Not	used

21.	 Quote	error.	A	quote	command	returned	an	error	from	the	server.	curl	allows	several
different	ways	to	send	custom	commands	to	a	IMAP,	POP3,	SMTP	or	FTP	server	and
features	a	generic	check	that	the	commands	work.	When	any	of	the	individually	issued
commands	fails,	this	is	exit	status	is	returned.	The	advice	is	generally	to	watch	the
headers	in	the	FTP	communication	to	better	understand	exactly	what	failed	and	how.

22.	 HTTP	page	not	retrieved.	The	requested	url	was	not	found	or	returned	another	error
with	the	HTTP	error	code	being	400	or	above.	This	return	code	only	appears	if		-f,	--
fail		is	used.

23.	 Write	error.	Curl	couldn't	write	data	to	a	local	filesystem	or	similar.	curl	receives	data
chunk	by	chunk	from	the	network	and	it	stores	it	like	at	(or	writes	it	to	stdout),	one	piece
at	a	time.	If	that	write	action	gets	an	error,	this	is	the	exit	status.

24.	 Not	used

Exit	status

128

25.	 Upload	failed.	The	server	refused	to	accept	or	store	the	file	that	curl	tried	to	send	to	it.
This	is	usually	due	to	wrong	access	rights	on	the	server	but	can	also	happen	due	to	out
of	disk	space	or	other	resource	constraints.	This	error	can	happen	for	many	protocols.

26.	 Read	error.	Various	reading	problems.	The	inverse	to	exit	status	23.	When	curl	sends
data	to	a	server,	it	reads	data	chunk	by	chunk	from	a	local	file	or	stdin	or	similar,	and	if
that	reading	fails	in	some	way	this	is	the	exit	status	curl	will	return.

27.	 Out	of	memory.	A	memory	allocation	request	failed.	curl	needed	to	allocate	more
memory	than	what	the	system	was	willing	to	give	it	and	curl	had	to	exit.	Try	using
smaller	files	or	make	sure	that	curl	gets	more	memory	to	work	with.

28.	 Operation	timeout.	The	specified	time-out	period	was	reached	according	to	the
conditions.	curl	offers	several	timeouts,	and	this	exit	code	tells	one	of	those	timeout
limits	were	reached.	Extend	the	timeout	or	try	changing	something	else	that	allows	curl
to	finish	its	operation	faster.	Often,	this	happens	due	to	network	and	remote	server
situations	that	you	cannot	affect	locally.

29.	 Not	used

30.	 FTP	PORT	failed.	The	PORT	command	failed.	Not	all	FTP	servers	support	the	PORT
command;	try	doing	a	transfer	using	PASV	instead!	The	PORT	command	is	used	to	ask
the	server	to	create	the	data	connection	by	connecting	back	to	curl.	See	also	the	FTP
uses	two	connections	section.

31.	 FTP	couldn't	use	REST.	The	REST	command	failed.	This	command	is	used	for
resumed	FTP	transfers.	curl	needs	to	issue	the	REST	command	to	do	range	or
resumed	transfers.	The	server	is	broken,	try	the	same	operation	without	range/resume
as	a	crude	work-around!

32.	 Not	used

33.	 HTTP	range	error.	The	range	request	didn't	work.	Resumed	HTTP	requests	aren't
necessary	acknowledged	or	supported,	so	this	exit	code	signals	that	for	this	resource
on	this	server,	there	can	be	no	range	or	resumed	transfers.

34.	 HTTP	post	error.	Internal	post-request	generation	error.	If	you	get	this	error,	please
report	the	exact	circumstances	to	the	curl	project!

35.	 A	TLS/SSL	connect	error.	The	SSL	handshake	failed.	The	SSL	handshake	can	fail	due
to	numerous	different	reasons	so	the	error	message	may	offer	some	additional	clues.
Maybe	the	parties	couldn't	agree	to	a	SSL/TLS	version,	an	agreeable	cipher	suite	or
similar.

Exit	status

129

36.	 Bad	download	resume.	Couldn't	continue	an	earlier	aborted	download.	When	asking	to
resume	a	transfer	that	then	ends	up	not	possible	to	do,	this	error	can	get	returned.	For
FILE,	FTP	or	SFTP.

37.	 Couldn't	read	the	given	file	when	using	the	FILE://	scheme.	Failed	to	open	the	file.	The
file	could	be	non-existing	or	is	it	a	permission	problem	perhaps?

38.	 LDAP	cannot	bind.	LDAP	"bind"	operation	failed,	which	is	a	necessary	step	in	the	LDAP
operation	and	thus	this	means	the	LDAP	query	could	not	be	performed.	This	might
happen	because	of	wrong	username	or	password,	or	for	other	reasons.

39.	 LDAP	search	failed.	The	given	search	terms	caused	the	LDAP	search	to	return	an	error.

40.	 Not	used

41.	 Not	used

42.	 Aborted	by	callback.	An	application	told	libcurl	to	abort	the	operation.	This	error	code	is
not	generally	made	visible	to	users	and	not	to	users	of	the	curl	tool.

43.	 Bad	function	argument.	A	function	was	called	with	a	bad	parameter	-	this	return	code	is
present	to	help	application	authors	to	understand	why	libcurl	can't	perform	certain
actions	and	should	never	be	return	by	the	curl	tool.	Please	file	a	bug	report	to	the	curl
project	if	this	happens	to	you!

44.	 Not	used

45.	 Interface	error.	A	specified	outgoing	network	interface	could	not	be	used.	curl	will
typically	decide	outgoing	network	and	IP	addresses	by	itself	but	when	explicitly	asked	to
use	a	specific	one	that	curl	can't	use,	this	error	can	occur.

46.	 Not	used

47.	 Too	many	redirects.	When	following	HTTP	redirects,	libcurl	hit	the	maximum	number	set
by	the	application.	The	maximum	number	of	redirects	is	unlimited	by	libcurl	but	is	set	to
50	by	default	by	the	curl	tool.	The	limit	is	present	to	stop	endless	redirect	loops.	Change
the	limit	with		--max-redirs	.

48.	 Unknown	option	specified	to	libcurl.	This	could	happen	if	you	use	a	curl	version	that	is
out	of	sync	with	the	underlying	libcurl	version.	Perhaps	your	newer	curl	tries	to	use	an
option	in	the	older	libcurl	that	wasn't	introduced	until	after	the	libcurl	version	you're	using
but	is	known	to	your	curl	tool	code	as	that	is	newer.	To	decrease	the	risk	of	this	and
make	sure	it	doesn't	happen:	use	curl	and	libcurl	of	the	same	version	number.

49.	 Malformed	telnet	option.	The	telnet	options	you	provide	to	curl	was	not	using	the	correct
syntax.

Exit	status

130

50.	 Not	used

51.	 The	server's	SSL/TLS	certificate	or	SSH	fingerprint	failed	verification.	curl	can	then	not
be	sure	of	the	server	being	who	it	claims	to	be.	See	the	using	TLS	with	curl	section	for
more	TLS	details	and	using	SCP	and	SFTP	with	curl	for	more	SSH	specific	details.

52.	 The	server	didn't	reply	anything,	which	in	this	context	is	considered	an	error.	When	a
HTTP(S)	server	responds	to	a	HTTP(S)	request,	it	will	always	return	something	as	long
as	it	is	alive	and	sound.	All	valid	HTTP	responses	have	a	status	line	and	responses
header.	Not	getting	anything	at	all	back	is	an	indication	the	server	is	faulty	or	perhaps
that	something	prevented	curl	from	reaching	the	right	server	or	that	you're	trying	to
connect	to	the	wrong	port	number	etc.

53.	 SSL	crypto	engine	not	found.

54.	 Cannot	set	SSL	crypto	engine	as	default.

55.	 Failed	sending	network	data.	Sending	data	over	the	network	is	a	crucial	part	of	most
curl	operations	and	when	curl	gets	an	error	from	the	lowest	networking	layers	that	the
sending	failed,	this	exit	status	gets	returned.	To	pinpoint	why	this	happens,	some
serious	digging	is	usually	required.	Start	with	enabling	verbose	mode,	do	tracing	and	if
possible	check	the	network	traffic	with	a	tool	like	Wireshark	or	similar.

56.	 Failure	in	receiving	network	data.	Receiving	data	over	the	network	is	a	crucial	part	of
most	curl	operations	and	when	curl	gets	an	error	from	the	lowest	networking	layers	that
the	receiving	of	data	failed,	this	exit	status	gets	returned.	To	pinpoint	why	this	happens,
some	serious	digging	is	usually	required.	Start	with	enabling	verbose	mode,	do	tracing
and	if	possible	check	the	network	traffic	with	a	tool	like	Wireshark	or	similar.

57.	 Not	used

58.	 Problem	with	the	local	certificate.	The	client	certificate	had	a	problem	so	it	couldn't	be
used.	Permissions?	The	wrong	pass	phrase?

59.	 Couldn't	use	the	specified	SSL	cipher.

60.	 Peer	certificate	cannot	be	authenticated	with	known	CA	certificates.

61.	 Unrecognized	transfer	encoding.

62.	 Invalid	LDAP	URL.

63.	 Maximum	file	size	exceeded.

64.	 Requested	FTP	SSL	level	failed.

65.	 Sending	the	data	requires	a	rewind	that	failed.

Exit	status

131

66.	 Failed	to	initialize	SSL	Engine.

67.	 The	user	name,	password,	or	similar	was	not	accepted	and	curl	failed	to	log	in.

68.	 File	not	found	on	TFTP	server.

69.	 Permission	problem	on	TFTP	server.

70.	 Out	of	disk	space	on	TFTP	server.

71.	 Illegal	TFTP	operation.

72.	 Unknown	TFTP	transfer	ID.

73.	 File	already	exists	(TFTP).

74.	 No	such	user	(TFTP).

75.	 Character	conversion	failed.

76.	 Character	conversion	functions	required.

77.	 Problem	with	reading	the	SSL	CA	cert

78.	 The	resource	referenced	in	the	URL	does	not	exist.

79.	 An	unspecified	error	occurred	during	the	SSH	session.

80.	 Failed	to	shut	down	the	SSL	connection.

81.	 Not	used

82.	 Could	not	load	CRL	file,	missing	or	wrong	format

83.	 TLS	certificate	issuer	check	failed

84.	 The	FTP	PRET	command	failed

85.	 RTSP:	mismatch	of	CSeq	numbers

86.	 RTSP:	mismatch	of	Session	Identifiers

87.	 unable	to	parse	FTP	file	list

88.	 FTP	chunk	callback	reported	error

89.	 No	connection	available,	the	session	will	be	queued

90.	 SSL	public	key	does	not	matched	pinned	public	key

Error	message

Exit	status

132

When	curl	exits	with	a	non-zero	code,	it	will	also	output	an	error	message	(unless		--silent	
is	used).	That	error	message	may	add	some	additional	information	or	circumstances	to	the
exit	status	number	itself	so	the	same	error	number	can	get	different	error	messages.

"Not	used"
The	list	of	exit	codes	above	contains	a	number	of	values	marked	as	'not	used'.	Those	are
exit	status	codes	that	aren't	used	in	modern	versions	of	curl	but	that	have	been	used	or	were
intended	to	be	used	in	the	past.	They	may	very	well	be	used	in	a	future	version	of	curl.

Additionally,	the	highest	used	error	status	in	this	list	is	90,	but	there	is	no	guarantee	that	a
future	curl	version	won't	decide	to	add	more	exit	codes	after	that	number.

Exit	status

133

FTP
FTP,	the	File	Transfer	Protocol,	is	probably	the	oldest	network	protocol	that	curl	supports—it
was	created	in	the	early	1970s.	The	official	spec	that	still	is	the	go-to	documentation	is	RFC
959,	from	1985,	published	well	over	a	decade	before	the	first	curl	release.

FTP	was	created	in	a	different	era	of	the	Internet	and	computers	and	as	such	it	works	a	little
bit	differently	than	most	other	protocols.	These	differences	can	often	be	ignored	and	things
will	just	work,	but	they	are	also	important	to	know	at	times	when	things	don't	run	as	planned.

Ping-pong
The	FTP	protocol	is	a	command	and	response	protocol;	the	client	sends	a	command	and
the	server	responds.	If	you	use	curl's		-v		option	you	will	get	to	see	all	the	commands	and
responses	during	a	transfer.

For	an	ordinary	transfer,	there	are	something	like	5	to	8	commands	necessary	to	send	and
as	many	responses	to	wait	for	and	read.	Perhaps	needlessly	to	say,	if	the	server	is	in	a
remote	location	there	will	be	a	lot	of	time	waiting	for	the	ping	pong	to	go	through	before	the
actual	file	transfer	can	be	set	up	and	get	started.	For	small	files,	the	initial	commands	can
very	well	take	longer	time	than	the	actual	data	transfer.

Transfer	mode
When	an	FTP	client	is	about	to	transfer	data,	it	specifies	to	the	server	which	"transfer	mode"
it	would	like	the	upcoming	transfer	to	use.	The	two	transfer	modes	curl	supports	are	'ASCII'
and	'BINARY'.	Ascii	is	basically	for	text	and	usually	means	that	the	server	will	send	the	files
with	converted	newlines	while	binary	means	sending	the	data	unaltered	and	assuming	the
file	is	not	text.

curl	will	default	to	binary	transfer	mode	for	FTP,	and	you	ask	for	ascii	mode	instead	with		-B,
--use-ascii		or	by	making	sure	the	URL	ends	with		;type=A	.

Authentication

FTP

134

http://www.ietf.org/rfc/rfc959.txt

FTP	is	one	of	the	protocols	you	normally	don't	access	without	a	user	name	and	password.	It
just	happens	that	for	systems	that	allow	"anonymous"	FTP	access	you	can	login	with	pretty
much	any	name	and	password	you	like.	When	curl	is	used	on	an	FTP	URL	to	do	transfer
without	any	given	user	name	or	password,	it	uses	the	name		anonymous		with	the	password
	ftp@example.com	.

If	you	want	to	provide	another	user	name	and	password,	you	can	pass	them	on	to	curl	either
with	the		-u,	--user		option	or	embed	the	info	in	the	URL:

curl	--user	daniel:secret	ftp://example.com/download

curl	ftp://daniel:secret@example.com/download

FTP

135

FTP	uses	two	connections
FTP	uses	two	TCP	connections!	The	first	connection	is	setup	by	the	client	when	it	connects
to	an	FTP	server,	and	is	called	the	control	connection.	As	the	initial	connection,	it	gets	to
handle	authentication	and	changing	to	the	correct	directory	on	the	remote	server,	etc.	When
the	client	then	is	ready	to	transfer	a	file,	a	second	TCP	connection	is	established	and	the
data	is	transferred	over	that.

This	setting	up	of	a	second	connection	causes	nuisances	and	headaches	for	several
reasons.

Active	connections

The	client	can	opt	to	ask	the	server	to	connect	to	the	client	to	set	it	up,	a	so-called	"active"
connection.	This	is	done	with	the	PORT	or	EPRT	commands.	Allowing	a	remote	host	to
connect	back	to	a	client	on	a	port	that	the	client	opens	up	requires	that	there's	no	firewall	or
other	network	appliance	in	between	that	refuses	that	to	go	through	and	that	is	far	from
always	the	case.	You	ask	for	an	active	transfer	using		curl	-P	[arg]		(also	known	as		--ftp-
port		in	long	form)	and	while	the	option	allows	you	to	specify	exactly	which	address	to	use,
just	setting	the	same	as	you	come	from	is	almost	always	the	correct	choice	and	you	do	that
with		-P	-	,	like	this	way	to	ask	for	a	file:

curl	-P	-	ftp://example.com/foobar.txt

You	can	also	explicitly	ask	curl	to	not	use	EPRT	(which	is	a	slightly	newer	command	than
PORT)	with	the		--no-epsv		command-line	option.

Passive	connections

Curl	defaults	to	asking	for	a	"passive"	connection,	which	means	it	sends	a	PASV	or	EPSV
command	to	the	server	and	then	the	server	opens	up	a	new	port	for	the	second	connection
that	then	curl	connects	to.	Outgoing	connections	to	a	new	port	are	generally	easier	and	less
restricted	for	end	users	and	clients,	but	it	then	requires	that	the	network	in	the	server's	end
allows	it.

Passive	connections	are	enabled	by	default,	but	if	you	have	switched	on	active	before,	you
can	switch	back	to	passive	with		--ftp-pasv	.

You	can	also	explicitly	ask	curl	not	to	use	EPSV	(which	is	a	slightly	newer	command	than
PASV)	with	the		--no-epsv		command-line	option.

Two	connections

136

Sometimes	the	server	is	running	a	funky	setup	so	that	when	curl	issues	the	PASV	command
and	the	server	responds	with	an	IP	address	for	curl	to	connect	to,	that	address	is	wrong	and
then	curl	fails	to	setup	the	data	connection.	For	this	(hopefully	rare)	situation,	you	can	ask
curl	to	ignore	the	IP	address	mentioned	in	the	PASV	response	(--ftp-skip-pasv-ip)	and
instead	use	the	same	IP	address	it	has	for	the	control	connection	even	for	the	second
connection.

Firewall	issues

Using	either	active	or	passive	transfers,	any	existing	firewalls	in	the	network	path	pretty
much	have	to	have	stateful	inspection	of	the	FTP	traffic	to	figure	out	the	new	port	to	open
that	up	and	accept	it	for	the	second	connection.

Two	connections

137

How	to	traverse	directories
When	doing	FTP	commands	to	traverse	the	remote	file	system,	there	are	a	few	different
ways	curl	can	proceed	to	reach	the	target	file,	the	file	the	user	wants	to	transfer.

multicwd

curl	can	do	one	change	directory	(CWD)	command	for	every	individual	directory	down	the
file	tree	hierarchy.	If	the	full	path	is		one/two/three/file.txt	,	that	method	means	doing	three
	CWD		commands	before	asking	for	the		file.txt		file	to	get	transferred.	This	method	thus
creates	quite	a	large	number	of	commands	if	the	path	is	many	levels	deep.	This	method	is
mandated	by	an	early	spec	(RFC	1738)	and	is	how	curl	acts	by	default:

curl	--ftp-method	multicwd	ftp://example.com/one/two/three/file.txt

This	then	equals	this	FTP	command/response	sequence	(simplified):

>	CWD	one

<	250	OK.	Current	directory	is	/one

>	CWD	two

<	250	OK.	Current	directory	is	/one/two

>	CWD	three

<	250	OK.	Current	directory	is	/one/two/three

>	RETR	file.txt

nocwd

The	opposite	to	doing	one	CWD	for	each	directory	part	is	to	not	change	the	directory	at	all.
This	method	asks	the	server	using	the	entire	path	at	once	and	is	thus	very	fast.	Occasionally
servers	have	a	problem	with	this	and	it	isn't	purely	standards-compliant:

curl	--ftp-method	nocwd	ftp://example.com/one/two/three/file.txt

This	then	equals	this	FTP	command/response	sequence	(simplified):

>	RETR	one/two/three/file.txt

singlecwd

Directory	traversing

138

This	is	the	in-between	the	other	two	FTP	methods.	This	makes	a	single		CWD		command	to
the	target	directory	and	then	it	asks	for	the	given	file:

curl	--ftp-method	singlecwd	ftp://example.com/one/two/three/file.txt

This	then	equals	this	FTP	command/response	sequence	(simplified):

>	CWD	one/two/three

<	250	OK.	Current	directory	is	/one/two/three

>	RETR	file.txt

Directory	traversing

139

More	advanced	FTP

FTP	Directory	listing
You	can	list	a	remote	FTP	directory	with	curl	by	making	sure	the	URL	ends	with	a	trailing
slash.	If	the	URL	ends	with	a	slash,	curl	will	presume	that	it	is	a	directory	you	want	to	list.	If	it
isn't	actually	a	directory,	you	will	most	likely	instead	get	an	error.

curl	ftp://ftp.example.com/directory/

With	FTP	there	is	no	standard	syntax	for	the	directory	output	that	is	returned	for	this	sort	of
command	that	uses	the	standard	FTP	command		LIST	.	The	listing	is	usually	humanly
readable	and	perfectly	understandable	but	you	will	see	that	different	servers	will	return	the
listing	in	slightly	different	ways.

One	way	to	get	just	a	listing	of	all	the	names	in	a	directory	and	thus	to	avoid	the	special
formatting	of	the	regular	directory	listings	is	to	tell	curl	to		--list-only		(or	just		-l).	curl
then	issues	the		NLST		FTP	command	instead:

curl	--list-only	ftp://ftp.example.com/directory/

NLST	has	its	own	quirks	though,	as	some	FTP	servers	list	only	actual	files	in	their	response
to	NLST;	they	do	not	include	directories	and	symbolic	links!

Uploading	with	FTP
To	upload	to	an	FTP	server,	you	specify	the	entire	target	file	path	and	name	in	the	URL,	and
you	specify	the	local	file	name	to	upload	with		-T,	--upload-file	.	Optionally,	you	end	the
target	URL	with	a	slash	and	then	the	file	component	from	the	local	path	will	be	appended	by
curl	and	used	as	the	remote	file	name.

Like:

curl	-T	localfile	ftp://ftp.example.com/dir/path/remote-file

or	to	use	the	local	file	name	as	the	remote	name:

Advanced	FTP	use

140

curl	-T	localfile	ftp://ftp.example.com/dir/path/

curl	also	supports	globbing	in	the	-T	argument	so	you	can	opt	to	easily	upload	a	range	or	a
series	of	files:

curl	-T	image[1-99].jpg	ftp://ftp.example.com/upload/

or

curl	-T	'{Huey,Dewey,Louie}.jpg'	ftp://ftp.example.com/nephews/

Custom	FTP	commands
TBD

FTPS
TBD

Common	FTP	problems
TBD

Advanced	FTP	use

141

SCP	and	SFTP
curl	supports	the	SCP	and	SFTP	protocols	if	built	with	the	correct	prerequisite	3rd	party
library,	libssh2.

SCP	and	SFTP	are	both	protocols	that	are	built	on	top	of	SSH,	a	secure	and	encrypted	data
protocol	that	is	similar	to	TLS	but	differs	in	a	few	important	ways.	For	example,	SSH	doesn't
use	certificates	of	any	sort	but	instead	it	uses	public	and	private	keys.	Both	SSH	and	TLS
provide	strong	crypto	and	secure	transfers	when	used	correctly.

The	SCP	protocol	is	generally	considered	to	be	the	black	sheep	of	the	two	since	it	isn't	very
portable	and	usually	only	works	between	Unix	systems.

URLs

SFTP	and	SCP	URLs	are	similar	to	other	URLs	and	you	download	files	using	these
protocols	the	same	as	with	others:

curl	sftp://example.com/file.zip	-u	user

and:

curl	scp://example.com/file.zip	-u	user

SFTP	(but	not	SCP)	supports	getting	a	file	listing	back	when	the	URL	ends	with	a	trailing
slash:

curl	sftp://example.com/	-u	user

Note	that	both	these	protocols	work	with	"users"	and	you	don't	ask	for	a	file	anonymously	or
with	a	standard	generic	name.	Most	systems	will	require	that	users	authenticate,	as	outlined
below.

When	requesting	a	file	from	an	SFTP	or	SCP	URL,	the	file	path	given	is	considered	to	be	the
absolute	path	on	the	remote	server	unless	you	specifically	ask	for	the	path	relative	to	the
user's	home	directory.	You	do	that	by	making	sure	the	path	starts	with		/~/	.	This	is	quite	the
opposite	to	how	FTP	URLs	work	and	is	a	common	cause	for	confusion	among	users.

For	user		daniel		to	transfer		todo.txt		from	his	home	directory,	it	would	look	similar	to	this:

SCP	and	SFTP

142

https://www.libssh2.org/

curl	sftp://example.com/~/todo.txt	-u	daniel

Auth

TBD

Known	hosts

A	secure	network	client	needs	to	make	sure	that	the	remote	host	is	exactly	the	host	that	it
thinks	it	is	communicating	with.	With	TLS	based	protocols,	it	is	done	by	the	client	verifying
the	server's	certificate.

With	SSH	protocols	there	are	no	server	certificates,	but	instead	each	server	can	provide	its
unique	key.	And	unlike	TLS,	SSH	as	no	certificate	authorities	or	anything	so	the	client	simply
has	to	make	sure	that	the	host's	key	matches	what	it	already	knows	(via	other	means)	it
should	look	like.

The	matching	of	keys	is	typically	done	using	hashes	of	the	key	and	the	file	that	the	client
store	the	hashes	for	known	servers	is	often	called		known_hosts		and	is	put	in	a	dedicated
SSH	directory.	On	Linux	systems	that	is	usually	called		~/.ssh	.

When	curl	connects	to	a	SFTP	and	SCP	host,	it	will	make	sure	that	the	host's	key	hash	is
already	present	in	the	known	hosts	file	or	it	will	deny	continued	operation	because	it	cannot
trust	that	the	server	is	the	right	one.	Once	the	correct	hash	exists	in		known_hosts		curl	can
perform	transfers.

To	force	curl	to	skip	checking	and	obeying	to	the	the		known_hosts		file,	you	can	use	the		-k	/
--insecure		command-line	option.	You	must	use	this	option	with	extreme	care	since	it	makes
it	possible	for	man-in-the-middle	attacks	not	to	be	detected.

SCP	and	SFTP

143

IMAP	and	POP3
TBD

IMAP	and	POP3

144

SMTP
SMTP	stands	for	Simple	Mail	Transfer	Protocol.

curl	supports	sending	data	to	a	an	SMTP	server,	which	combined	with	the	right	set	of
command	line	options	makes	an	email	get	sent	to	a	set	of	receivers	of	your	choice.

When	sending	SMTP	with	curl,	there	are	a	two	necessary	command	line	options	that	must
be	used.

You	need	to	tell	the	server	at	least	one	recipient	with		--mail-rcpt	.	You	can	use	this
option	several	times	and	then	curl	will	tell	the	server	that	all	those	email	addresses
should	receive	the	email.

You	need	to	tell	the	server	which	email	address	that	is	the	sender	of	the	email	with		--
mail-from	.	It	is	important	to	realize	that	this	email	address	is	not	necessarily	the	same
as	is	shown	in	the		From:		line	of	the	email	text.

Then,	you	need	to	provide	the	actual	email	data.	This	is	a	(text)	file	formatted	according	to
RFC	5322.	It	is	a	set	of	headers	and	a	body.	Both	the	headers	and	the	body	need	to	be
correctly	encoded.	The	headers	typically	include		To:	,		From:	,		Subject:	,		Date:		etc.

A	basic	command	to	send	an	email:

curl	smtp://mail.example.com	--mail-from	myself@example.com	--mail-rcpt

receiver@example.com	--upload-file	email.txt

Example	email.txt

From:	John	Smith	<john@example.com>

To:	Joe	Smith	<smith@example.com>

Subject:	an	example.com	example	email

Date:	Mon,	7	Nov	2016	08:45:16

Dear	Joe,

Welcome	to	this	example	email.	What	a	lovely	day.

Secure	mail	transfer

SMTP

145

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://tools.ietf.org/html/rfc5322.html

Some	mail	providers	allow	or	require	using	SSL	for	SMTP.	They	may	use	a	dedicated	port
for	SSL	or	allow	SSL	upgrading	over	a	plaintext	connection.

If	your	mail	provider	has	a	dedicated	SSL	port	you	can	use	smtps://	instead	of	smtp://,	which
uses	the	SMTP	SSL	port	of	465	by	default	and	requires	the	entire	connection	to	be	SSL.	For
example	smtps://smtp.gmail.com/.

However,	if	your	provider	allows	upgrading	from	plaintext	to	secure	transfers	you	can	use
one	of	these	options:

--ssl											Try	SSL/TLS	(FTP,	IMAP,	POP3,	SMTP)

--ssl-reqd						Require	SSL/TLS	(FTP,	IMAP,	POP3,	SMTP)

You	can	tell	curl	to	try	but	not	require	upgrading	to	secure	transfers	by	adding		--ssl		to	the
command:

curl	--ssl	smtp://mail.example.com	--mail-from	myself@example.com

					--mail-rcpt	receiver@example.com	--upload-file	email.txt

You	can	tell	curl	to	require	upgrading	to	using	secure	transfers	by	adding		--ssl-reqd		to	the
command:

curl	--ssl-reqd	smtp://mail.example.com	--mail-from	myself@example.com

					--mail-rcpt	receiver@example.com	--upload-file	email.txt

The	SMTP	URL
The	path	part	of	a	SMTP	request	specifies	the	host	name	to	present	during	communication
with	the	mail	server.	If	the	path	is	omitted	then	curl	will	attempt	to	figure	out	the	local
computer's	host	name	and	use	that.	However,	this	may	not	return	the	fully	qualified	domain
name	that	is	required	by	some	mail	servers	and	specifying	this	path	allows	you	to	set	an
alternative	name,	such	as	your	machine's	fully	qualified	domain	name,	which	you	might	have
obtained	from	an	external	function	such	as	gethostname	or	getaddrinfo.

To	connect	to	the	mail	server	at		mail.example.com		and	send	your	local	computer's	host
name	in	the	HELO	/	EHLO	command:

curl	smtp://mail.example.com

You	can	of	course	as	always	use	the		-v		option	to	get	to	see	the	client-server
communication.

SMTP

146

To	instead	have	curl	send		client.example.com		in	the		HELO		/		EHLO		command	to	the	mail
server	at		mail.example.com	,	use:

curl	smtp://mail.example.com/client.example.com

No	MX	lookup!
When	you	send	email	with	an	ordinary	mail	client,	it	will	first	check	for	an	MX	record	for	the
particular	domain	you	want	to	send	email	to.	If	you	send	an	email	to	joe@example.com,	the
client	will	get	the	MX	records	for		example.com		to	learn	which	mail	server(s)	to	use	when
sending	email	to	example.com	users.

curl	does	no	MX	lookups	by	itself.	If	you	want	to	figure	out	which	server	to	send	an	email	to
for	a	particular	domain,	we	recommend	you	figure	that	out	first	and	then	call	curl	to	use
those	servers.	Useful	command	line	tools	to	get	MX	records	with	include	'dig'	and	'nslookup'.

SMTP

147

TELNET
TBD

TELNET

148

TLS
TLS	stands	for	Transport	Layer	Security	and	is	the	name	for	the	technology	that	was
formerly	called	SSL.	The	term	SSL	hasn't	really	died	though	so	these	days	both	the	terms
TLS	and	SSL	are	often	used	interchangeably	to	describe	the	same	thing.

TLS	is	a	cryptographic	security	layer	"on	top"	of	TCP	that	makes	the	data	tamper	proof	and
guarantees	server	authenticity,	based	on	strong	public	key	cryptography	and	digital
signatures.

Ciphers
When	curl	connections	to	a	TLS	server,	it	negotiates	how	to	speak	the	protocol	and	that
negotiation	involves	several	parameters	and	variables	that	both	parties	need	to	agree	to.
One	of	the	parameters	is	which	cryptography	algorithms	to	use,	the	so	called	cipher.	Over
time,	security	researchers	figure	out	flaws	and	weaknesses	in	existing	ciphers	and	they	are
gradually	phased	out	over	time.

Using	the	verbose	option,		-v	,	you	can	get	information	about	which	cipher	and	TLS	version
are	negotiated.	By	using	the		--ciphers		option,	you	can	change	what	cipher	to	prefer	in	the
negotiation,	but	mind	you,	this	is	a	power	feature	that	takes	knowledge	to	know	how	to	use
in	ways	that	don't	just	make	things	worse.

Enable	TLS
curl	supports	the	TLS	version	of	many	protocols.	HTTP	has	HTTPS,	FTP	has	FTPS,	LDAP
has	LDAPS,	POP3	has	POP3S,	IMAP	has	IMAPS	and	SMTP	has	SMTPS.

If	the	server	side	supports	it,	you	can	use	the	TLS	version	of	these	protocols	with	curl.

There	are	two	general	approaches	to	do	TLS	with	protocols.	One	of	them	is	to	speak	TLS
already	from	the	first	connection	handshake	while	the	other	is	to	"upgrade"	the	connection
from	plain-text	to	TLS	using	protocol	specific	instructions.

With	curl,	if	you	explicitly	specify	the	TLS	version	of	the	protocol	(the	one	that	has	a	name
that	ends	with	an	'S'	character)	in	the	URL,	curl	will	try	to	connect	with	TLS	from	start,	while
if	you	specify	the	non-TLS	version	in	the	URL	you	can	usually	upgrade	the	connection	to
TLS-based	with	the		--ssl		option.

The	support	table	looks	like	this:

TLS

149

Clear TLS	version --ssl

HTTP HTTPS no

LDAP LDAPS no

FTP FTPS yes

POP3 POP3S yes

IMAP IMAPS yes

SMTP SMTPS yes

The	protocols	that	can	do		--ssl		all	favor	that	method.	Using		--ssl		means	that	curl	will
attempt	to	upgrade	the	connection	to	TLS	but	if	that	fails,	it	will	still	continue	with	the	transfer
using	the	plain-text	version	of	the	protocol.	To	make	the		--ssl		option	require	TLS	to
continue,	there's	instead	the		--ssl-reqd		option	which	will	make	the	transfer	fail	if	curl
cannot	successfully	negotiate	TLS.

Require	TLS	security	for	your	FTP	transfer:

curl	--ssl-reqd	ftp://ftp.example.com/file.txt

Suggest	TLS	to	be	used	for	your	FTP	transfer:

curl	--ssl	ftp://ftp.example.com/file.txt

Connecting	directly	with	TLS	(to	HTTPS://,	LDAPS://,	FTPS://	etc)	means	that	TLS	is
mandatory	and	curl	will	return	an	error	if	TLS	isn't	negotiated.

Get	a	file	over	HTTPS:

curl	https://www.example.com/

SSL	and	TLS	versions
SSL	was	invented	in	the	mid	90s	and	has	developed	ever	since.	SSL	version	2	was	the	first
widespread	version	used	on	the	Internet	but	that	was	deemed	insecure	already	a	very	long
time	ago.	SSL	version	3	took	over	from	there,	and	it	too	has	been	deemed	not	safe	enough
for	use.

TLS	version	1.0	was	the	first	"standard".	RFC	2246	was	published	1999.	After	that,	TLS	1.1
came	and	and	in	November	2016	TLS	1.2	is	the	gold	standard.	TLS	1.3	is	in	the	works	and
we	expect	to	see	it	finalized	and	published	as	a	standard	by	the	IETF	at	some	point	during

TLS

150

2017.

curl	is	designed	to	use	a	"safe	version"	of	SSL/TLS	by	default.	It	means	that	it	will	not
negotiate	SSLv2	or	SSLv3	unless	specifically	told	to,	and	in	fact	several	TLS	libraries	no
longer	provide	support	for	those	protocols	so	in	many	cases	curl	is	not	even	able	to	speak
those	protocol	versions	unless	you	make	a	serious	effort.

Option Use

--sslv2 SSL	version	2

--sslv3 SSL	version	3

--tlsv1 TLS	>=	version	1.0

--tlsv1.0 TLS	version	1.0

--tlsv1.1 TLS	version	1.1

--tlsv1.2 TLS	version	1.2

--tlsv1.3 TLS	version	1.3

NOTE:	TLS	version	1.3	support	is	only	supported	in	selected	very	recent	development
versions	of	certain	TLS	libraries	and	requires	curl	7.52.0	or	later.

Verifying	server	certificates
Having	a	secure	connection	to	a	server	is	not	worth	a	lot	if	you	cannot	also	be	certain	that
you	are	communicating	with	the	correct	host.	If	we	don't	know	that,	we	could	just	as	well	be
talking	with	an	impostor	that	just	appears	to	be	who	we	think	it	is.

To	check	that	it	communicates	with	the	right	TLS	server,	curl	uses	a	set	of	locally	stored	CA
certificates	to	verify	the	signature	of	the	server's	certificate.	All	servers	provide	a	certificate
to	the	client	as	part	of	the	TLS	handshake	and	all	public	TLS-using	servers	have	acquired
that	certificate	from	an	established	Certificate	Authority.

After	some	applied	crypto	magic,	curl	knows	that	the	server	is	in	fact	the	correct	one	that
acquired	that	certificate	for	the	host	name	that	curl	used	to	connect	to	it.	Failing	to	verify	the
server's	certificate	is	a	TLS	handshake	failure	and	curl	exists	with	an	error.

In	rare	circumstances,	you	may	decide	that	you	still	want	to	communicate	with	a	TLS	server
even	if	the	certificate	verification	fails.	You	then	accept	the	fact	that	your	communication	may
be	subject	to	Man-In-The-Middle	attacks.	You	lower	your	guards	with	the		-k		or		--insecure	
option.

TLS

151

CA	store
curl	needs	a	"CA	store",	a	collection	of	CA	certificates,	to	verify	the	TLS	server	it	talks	to.

If	curl	is	built	to	use	a	TLS	library	that	is	"native"	to	your	platform,	chances	are	that	library	will
use	the	native	CA	store	as	well.	If	not,	curl	has	to	either	have	been	built	to	know	where	the
local	CA	store	is,	or	users	need	to	provide	a	path	to	the	CA	store	when	curl	is	invoked.

You	can	point	out	a	specific	CA	bundle	to	use	in	the	TLS	handshake	with	the		--cacert	
command	line	option.	That	bundle	needs	to	be	in	PEM	format.	You	can	also	set	the
environment	variable		CURL_CA_BUNDLE		to	the	full	path.

CA	store	on	windows

curl	built	on	windows	that	isn't	using	the	native	TLS	library	(Schannel),	have	an	extra
sequence	for	how	the	CA	store	can	be	found	and	used.

curl	will	search	for	a	CA	cert	file	named	"curl-ca-bundle.crt"	in	these	directories	and	in	this
order:

1.	 application's	directory
2.	 current	working	directory
3.	 Windows	System	directory	(e.g.		C:\windows\system32)
4.	 Windows	Directory	(e.g.		C:\windows)
5.	 all	directories	along		%PATH%	

Certificate	pinning
TLS	certificate	pinning	is	a	way	to	verify	that	the	public	key	used	to	sign	the	servers
certificate	has	not	changed.	It	is	"pinned".

When	negotiating	a	TLS	or	SSL	connection,	the	server	sends	a	certificate	indicating	its
identity.	A	public	key	is	extracted	from	this	certificate	and	if	it	does	not	exactly	match	the
public	key	provided	to	this	option,	curl	will	abort	the	connection	before	sending	or	receiving
any	data.

You	tell	curl	a	file	name	to	read	the	sha256	value	from,	our	you	specify	the	base64	encoded
hash	directly	in	the	command	line	with	a	"sha256//"	prefix.	You	can	specify	one	or	more
hashes	like	that,	separated	with	semicolons	(;).

curl	--pinnedpubkey	"sha256//83d34tasd3rt..."	https://example.com/

TLS

152

This	feature	is	not	supported	by	all	TLS	backends.

OCSP	stapling
This	uses	the	TLS	extension	called	Certificate	Status	Request	to	ask	the	server	to	provide	a
fresh	"proof"	from	the	CA	in	the	handshake,	that	the	certificate	that	it	returns	is	still	valid.
This	is	a	way	to	make	really	sure	the	server's	certificate	hasn't	been	revoked.

If	the	server	doesn't	support	this	extension,	the	test	will	fail	and	curl	returns	an	error.	And	it	is
still	far	too	common	that	servers	don't	support	this.

Ask	for	the	handshake	to	use	the	status	request	like	this:

curl	--cert-status	https://example.com/

This	feature	is	only	supported	by	the	OpenSSL,	GnuTLS	and	NSS	backends.

Client	certificates
TLS	client	certificates	are	a	way	for	clients	to	cryptographically	prove	to	servers	that	they	are
truly	the	right	peer.	A	command	line	that	uses	a	client	certificate	specifies	the	certificate	and
the	corresponding	key,	and	they	are	then	passed	on	the	TLS	handshake	with	the	server.

You	need	to	have	your	client	certificate	already	stored	in	a	file	when	doing	this	and	you
should	supposedly	have	gotten	it	from	the	right	instance	via	a	different	channel	previously.

The	key	is	typically	protected	by	a	password	that	you	need	to	provide	or	get	prompted	for
interactively.

curl	offers	options	to	let	you	specify	a	single	file	that	is	both	the	client	certificate	and	the
private	key	concatenated	using		--cert	,	or	you	can	specify	the	key	file	independently	with
	--key	:

curl	--cert	mycert:mypassword	https://example.com

curl	--cert	mycert:mypassword	--key	mykey	https://example.com

For	some	TLS	backends	you	can	also	pass	in	the	key	and	certificate	using	different	types:

curl	--cert	mycert:mypassword	--cert-type	PEM	\

					--key	mykey	--key-type	PEM	https://example.com

TLS

153

TLS	auth
TBD

Different	TLS	backends
TBD

TLS

154

When	things	don't	run	the	way	you	thought
they	would
TBD

Debug

155

Copy	as	curl
Using	curl	to	perform	an	operation	a	user	just	managed	to	do	with	his	or	her	browser	is	one
of	the	more	common	requests	and	areas	people	ask	for	help	about.

How	do	you	get	a	curl	command	line	to	get	a	resource,	just	like	the	browser	would	get	it,
nice	and	easy?	Both	Chrome	and	Firefox	have	provided	this	feature	for	quite	some	time
already!

From	Firefox
You	get	the	site	shown	with	Firefox's	network	tools.	You	then	right-click	on	the	specific
request	you	want	to	repeat	in	the	"Web	Developer->Network"	tool	when	you	see	the	HTTP
traffic,	and	in	the	menu	that	appears	you	select	"Copy	as	cURL".	Like	this	screenshot	below
shows.	The	operation	then	generates	a	curl	command	line	to	your	clipboard	and	you	can
then	paste	that	into	your	favorite	shell	window.	This	feature	is	available	by	default	in	all
Firefox	installations.

Copy	as	curl

156

From	Chrome
When	you	pop	up	the	More	tools->Developer	mode	in	Chrome,	and	you	select	the	Network
tab	you	see	the	HTTP	traffic	used	to	get	the	resources	of	the	site.	On	the	line	of	the	specific
resource	you	are	interested	in,	you	right-click	with	the	mouse	and	you	select	"Copy	as
cURL"	and	it	will	generate	a	command	line	for	you	in	your	clipboard.	Paste	that	in	a	shell	to
get	a	curl	command	line	that	makes	the	transfer.	This	feature	is	available	by	default	in	all
Chrome	and	Chromium	installations.

On	Firefox,	without	using	the	devtools
If	this	is	something	you	would	like	to	get	done	more	often,	you	probably	find	using	the
developer	tools	a	bit	inconvenient	and	cumbersome	to	pop	up	just	to	get	the	command	line
copied.	Then	cliget	is	the	perfect	add-on	for	you	as	it	gives	you	a	new	option	in	the	right-click

Copy	as	curl

157

https://addons.mozilla.org/en-US/firefox/addon/cliget/

menu,	so	you	can	get	a	quick	command	line	generated	really	quickly,	like	this	example	when
I	right-click	an	image	in	Firefox:

Not	perfect
These	methods	all	give	you	a	command	line	to	reproduce	their	HTTP	transfers,	but	you	will
also	learn	they	they	are	still	often	not	the	perfect	solution	to	your	problems.	Why?	Well
mostly	because	these	tools	are	written	to	rerun	the	exact	same	request	that	you	copied,
while	you	often	what	to	rerun	the	same	logic	but	not	sending	an	exact	copy	of	the	same
cookies	and	file	contents	etc.

These	tools	will	give	you	command	lines	with	static	and	fixed	cookie	contents	to	send	in	the
request,	because	that	is	the	contents	of	the	cookies	that	were	sent	in	the	browser's
requests.	You	will	most	likely	want	to	rewrite	the	command	line	to	dynamically	adapt	to
whatever	the	content	is	in	the	cookie	that	the	server	told	you	in	a	previous	response.	And	so
on.

The	copy	as	curl	functionality	is	also	often	notoriously	bad	at	using		-F		and	instead	they
provide	handcrafted		--data-binary		solutions	including	the	mime	separator	strings	etc.

Copy	as	curl

158

Copy	as	curl

159

curl	examples
TBD

Fetch	many	variations	on	a	URL
TBD

Follow	redirects	automatically
TBD

Impersonating	a	specific	web	browser
TBD

Issuing	a	web	search
TBD

Tell	the	server	where	you	didn't	come	from
TBD

Maintain	state	with	cookies
TBD

Login	to	a	web	service	with	POST
TBD

curl	examples

160

Upload	a	file	as	with	a	HTML	form
TBD

curl	examples

161

How	to	HTTP	with	curl
In	all	user	surveys	and	during	all	curl's	lifetime,	HTTP	has	been	the	most	important	and	most
frequently	used	protocol	that	curl	supports.	This	chapter	will	explain	how	to	do	effective
HTTP	transfers	and	general	fiddling	with	curl.

This	will	mostly	work	the	same	way	for	HTTPS,	as	they	are	really	the	same	thing	under	the
hood,	as	HTTPS	is	HTTP	with	an	extra	security	TLS	layer.	See	also	the	specific	HTTPS
section	below.

HTTP	methods
In	every	HTTP	request,	there's	a	method.	Sometimes	called	a	verb.	The	most	commonly
used	ones	are	GET,	POST,	HEAD	and	PUT.

Normally	however	you	don't	specify	the	method	in	the	command	line,	but	instead	the	exact
method	used	depends	on	the	specific	options	you	use.	GET	is	default,	using		-d		or		-F	
makes	it	a	POST,		-I		generates	a	HEAD	and		-T		sends	a	PUT...

More	about	this	in	the	Modify	the	HTTP	request	section.

HTTPS
TBD

Scripting	browser-like	tasks
TBD

How	to	HTTP	with	curl

162

HTTP	protocol	basics

(This	assumes	you	have	read	the	Network	and	protocols	section	or	are	otherwise	already
familiar	with	protocols.)

HTTP	is	a	protocol	that	is	easy	to	learn	the	basics	of.	A	client	connects	to	a	server—and	it	is
always	the	client	that	takes	the	initiative—sends	a	request	and	receives	a	response.	Both
the	request	and	the	response	consist	of	headers	and	a	body.	There	can	be	little	or	a	lot	of
information	going	in	both	directions.

An	HTTP	request	sent	by	a	client	starts	with	a	request	line,	followed	by	headers	and	then
optionally	a	body.	The	most	common	HTTP	request	is	probably	the	GET	request	which	asks
the	server	to	return	a	specific	resource,	and	this	request	does	not	contain	a	body.

When	a	client	connects	to	'example.com'	and	asks	for	the	'/'	resource,	it	sends	a	GET
without	a	request	body:

GET	/	HTTP/1.1

User-agent:	curl/2000

Host:	example.com

…the	server	could	respond	with	something	like	below,	with	response	headers	and	a
response	body	('hello').	The	first	line	in	the	response	also	contains	the	response	code	and
the	specific	version	the	server	supports:

HTTP/1.1	200	OK

Server:	example-server/1.1

Content-Length:	5

Content-Type:	plain/text

hello

If	the	client	would	instead	send	a	request	with	a	small	request	body	('hello'),	it	could	look	like
this:

POST	/	HTTP/1.1

Host:	example.com

User-agent:	curl/2000

Content-Length:	5

hello

A	server	always	responds	to	an	HTTP	request	unless	something	is	wrong.

Protocol	basics

163

The	URL	converted	to	a	request

So	when	a	HTTP	client	is	given	a	URL	to	operate	on,	that	URL	is	then	used,	picked	apart
and	those	parts	are	used	in	various	places	in	the	outgoing	request	to	the	server.	Let's	take
the	an	example	URL:

https://www.example.com/path/to/file

https	means	that	curl	will	use	TLS	to	the	remote	port	443	(which	is	the	default	port
number	when	no	specified	is	used	in	the	URL).

www.example.com	is	the	host	name	that	curl	will	resolve	to	one	or	more	IP	address	to
connect	to.	This	host	name	will	also	be	used	in	the	HTTP	request	in	the		Host:		header.

/path/to/file	is	used	in	the	HTTP	request	to	tell	the	server	which	exact
document/resources	curl	wants	to	fetch

--path-as-is

The	path	part	of	the	URL	is	the	part	that	starts	with	the	first	slash	after	the	host	name	and
ends	either	at	the	end	of	the	URL	or	at	a	'?'	or	'#'	(roughly	speaking).

If	you	include	substrings	including		/../		or		/./		in	the	path,	curl	will	automatically	squash
them	before	the	path	is	sent	to	the	server,	as	is	dictated	by	standards	and	how	such	strings
tend	to	work	in	local	file	systems.	The		/../		sequence	will	remove	the	previous	section	so
that		/hello/sir/../		ends	up	just		/hello/		and		/./		is	simply	removed	so	that
	/hello/./sir/		becomes		/hello/sir/	.

To	prevent	curl	from	squashing	those	magic	sequences	before	they	are	sent	to	the	server
and	thus	allow	them	through,	the		--path-as-is		option	exists.

Protocol	basics

164

HTTP	responses

When	an	HTTP	client	talks	HTTP	to	a	server,	the	server	will	respond	with	an	HTTP	response
message	or	curl	will	consider	it	an	error	and	returns	52	with	the	error	message	"Empty	reply
from	server".

Size	of	an	HTTP	response

An	HTTP	response	has	a	certain	size	and	curl	needs	to	figure	it	out.	There	are	several
different	ways	to	signal	the	end	of	an	HTTP	response	but	the	most	basic	way	is	to	use	the
	Content-Length:		header	in	the	response	and	with	that	specify	the	exact	number	of	bytes	in
the	response	body.

Some	early	HTTP	server	implementations	had	problems	with	file	sizes	greater	than	2GB	and
wrongly	managed	to	send	Content-Length:	headers	with	negative	sizes	or	otherwise	just
plain	wrong	data.	curl	can	be	told	to	ignore	the	Content-Length:	header	completely	with		--
ignore-content-length	.	Doing	so	may	have	some	other	negative	side-effects	but	should	at
least	let	you	get	the	data.

HTTP	response	codes

An	HTTP	transfer	gets	a	3	digit	response	code	back	in	the	first	response	line.	The	response
code	is	the	server's	way	of	giving	the	client	a	hint	about	how	the	request	was	handled.

It	is	important	to	note	that	curl	does	not	consider	it	an	error	even	if	the	response	code	would
indicate	that	the	requested	document	couldn't	be	delivered	(or	similar).	curl	considers	a
successful	sending	and	receiving	of	HTTP	to	be	good.

The	first	digit	of	the	HTTP	response	code	is	a	kind	of	"error	class":

1xx:	transient	response,	more	is	coming
2xx:	success
3xx:	a	redirect
4xx:	the	client	asked	for	something	the	server	couldn't/wouldn't	deliver
5xx:	there's	problem	in	the	server

Remember	that	you	can	use	curl's		--write-out		option	to	extract	the	response	code.	See
the	--write-out	section.

CONNECT	response	codes

Responses

165

Since	there	can	be	a	HTTP	request	and	a	separate	CONNECT	request	in	the	same	curl
transfer,	we	often	separate	the	CONNECT	response	(from	the	proxy)	from	the	remote
server's	HTTP	response.

The	CONNECT	is	also	an	HTTP	request	so	it	gets	response	codes	in	the	same	numeric
range	and	you	can	use		--write-out		to	extract	that	code	as	well.

Chunked	transfer	encoding

An	HTTP	1.1	server	can	decide	to	respond	with	a	"chunked"	encoded	response,	a	feature
that	wasn't	present	in	HTTP	1.0.

When	sending	a	chunked	response,	there's	no	Content-Length:	for	the	response	to	indicate
its	size.	Instead,	there's	a		Transfer-Encoding:	chunked		header	that	tells	curl	there's	chunked
data	coming	and	then	in	the	response	body,	the	data	comes	in	a	series	of	"chunks".	Every
individual	chunk	starts	with	the	size	of	that	particular	chunk	(in	hexadecimal),	then	a	newline
and	then	the	contents	of	the	chunk.	This	is	repeated	over	and	over	until	the	end	of	the
response,	which	is	signaled	with	a	zero	sized	chunk.	The	point	of	this	sort	of	response	is	for
the	client	to	be	able	to	figure	out	when	the	responses	has	ended	even	though	the	server
didn't	know	the	full	size	before	it	started	to	send	it.	This	is	usually	the	case	when	the
response	is	dynamic	and	generated	at	the	point	when	the	request	comes.

Clients	like	curl	will,	of	course,	decode	the	chunks	and	not	show	the	chunk	sizes	to	users.

Gzipped	transfers

Responses	over	HTTP	can	be	sent	in	compressed	format.	This	is	most	commonly	done	by
the	server	when	it	includes	a		Content-Encoding:	gzip		in	the	response	as	a	hint	to	the	client.
Compressed	responses	make	a	lot	of	sense	when	either	static	resources	are	sent	(that	were
compressed	at	a	previous	moment	in	time)	or	even	in	run-time	when	there's	more	CPU
power	available	than	bandwidth.	Sending	a	much	smaller	amount	of	data	is	often	preferred.

You	can	ask	curl	to	both	ask	for	compressed	content	and	automatically	and	transparently
uncompress	gzipped	data	when	receiving	content	encoded	gzip	(or	in	fact	any	other
compression	algorithm	that	curl	understands)	by	using		--compressed	:

curl	--compressed	http://example.com/

Transfer	encoding

A	less	common	feature	used	with	transfer	encoding	is	compression.

Responses

166

Compression	in	itself	is	common.	Over	time	the	dominant	and	web	compatible	way	to	do
compression	for	HTTP	has	become	to	use		Content-Encoding		as	described	in	the	section
above.	But	HTTP	was	originally	intended	and	specified	to	allow	transparent	compression	as
a	transfer	encoding,	and	curl	supports	this	feature.

The	client	then	simply	asks	the	server	to	do	compression	transfer	encoding	and	if
acceptable,	it	will	response	with	a	header	indicating	that	it	will	and	curl	will	then	transparently
uncompress	that	data	on	arrival.	A	user	enables	asking	for	compressed	transfer	encoding
with		--tr-encoding	:

curl	--tr-encoding	http://example.com/

It	should	be	noted	that	not	many	HTTP	servers	in	the	wild	support	this.

Pass	on	transfer	encoding

In	some	situations	you	may	want	to	use	curl	as	some	sort	of	proxy	or	other	in	between
software.	In	those	cases,	curl's	way	to	deal	with	transfer-encoding	headers	and	then
decoding	the	actual	data	transparently	may	not	be	desired,	if	the	end	receiver	also	expects
to	do	the	same.

You	can	then	ask	curl	to	pass	on	the	received	data,	without	decoding	it.	That	means	passing
on	the	sizes	in	the	chunked	encoding	format	or	the	compressed	format	when	compressed
transfer	encoding	is	used	etc.

curl	--raw	http://example.com/

Responses

167

HTTP	authentication
Each	HTTP	request	can	be	made	authenticated.	If	a	server	or	a	proxy	wants	the	user	to
provide	proof	that	they	have	the	correct	credentials	to	access	a	URL	or	perform	an	action,	it
can	send	back	a	HTTP	response	code	that	informs	the	client	that	it	needs	to	provide	a
correct	HTTP	authentication	header	in	the	request	to	be	allowed.

A	server	that	requires	authentication	sends	back	a	401	response	code	and	an	associated
	WWW-Authenticate:		header	that	lists	all	the	authentication	methods	that	the	server	supports.

An	HTTP	proxy	that	requires	authentication	sends	back	a	407	response	code	and	an
associated		Proxy-Authenticate:		header	that	lists	all	the	authentication	methods	that	the
proxy	supports.

It	might	be	worth	to	note	that	most	web	sites	of	today	do	not	require	HTTP	authentication	for
login	etc,	but	they	will	instead	ask	users	to	login	on	web	pages	and	then	the	browser	will
issue	a	POST	with	the	user	and	password	etc,	and	then	subsequently	maintain	cookies	for
the	session.

To	tell	curl	to	do	an	authenticated	HTTP	request,	you	use	the		-u,	--user		option	to	provide
user	name	and	password	(separated	with	a	colon).	Like	this:

curl	--user	daniel:secret	http://example.com/

This	will	make	curl	use	the	default	"Basic"	HTTP	authentication	method.	Yes,	it	is	actually
called	Basic	and	it	is	truly	very	basic.	To	explicitly	ask	for	the	basic	method,	use		--basic	.

The	Basic	authentication	method	sends	the	user	name	and	password	in	clear	text	over	the
network	(base64	encoded)	and	should	be	avoided	for	HTTP	transport.

When	asking	to	do	a	HTTP	transfer	using	a	single	(specified	or	implied),	authentication
method,	curl	will	insert	the	authentication	header	already	in	the	first	request	on	the	wire.

If	you'd	rather	have	curl	first	test	if	the	authentication	is	really	required,	you	can	ask	curl	to
figure	that	out	and	then	automatically	use	the	most	safe	method	it	knows	about	with		--
anyauth	.	This	makes	curl	try	the	request	unauthenticated,	and	then	switch	over	to
authentication	if	necessary:

curl	--anyauth	--user	daniel:secret	http://example.com/

and	the	same	concept	works	for	HTTP	operations	that	may	require	authentication:

Authentication

168

curl	--proxy-anyauth	--proxy-user	daniel:secret	http://example.com/	\

					--proxy	http://proxy.example.com:80/

curl	typically	(a	little	depending	on	how	it	was	built)	speaks	several	other	authentication
methods	as	well,	including	Digest,	Negotiate	and	NTLM.	You	can	ask	for	those	methods	too
specifically:

curl	--digest	--user	daniel:secret	http://example.com/

curl	--negotiate	--user	daniel:secret	http://example.com/

curl	--ntlm	--user	daniel:secret	http://example.com/

Authentication

169

HTTP	ranges
What	if	the	client	only	wants	the	first	200	bytes	out	of	a	remote	resource	or	perhaps	300
bytes	somewhere	in	the	middle?	The	HTTP	protocol	allows	a	client	to	ask	for	only	a	specific
data	range.	The	client	asks	the	server	for	the	specific	range	with	a	start	offset	and	an	end
offset.	It	can	even	combine	things	and	ask	for	several	ranges	in	the	same	request	by	just
listing	a	bunch	of	pieces	next	to	each	other.	When	a	server	sends	back	multiple	independent
pieces	to	answer	such	a	request,	you	will	get	them	separated	with	mime	boundary	strings
and	it	will	be	up	to	the	user	application	to	handle	that	accordingly.	curl	will	not	further
separate	such	a	response.

However,	a	byte	range	is	only	a	request	to	the	server.	It	does	not	have	to	respect	the	request
and	in	many	cases,	like	when	the	server	automatically	generates	the	contents	on	the	fly
when	it	is	being	asked,	it	will	simply	refuse	to	do	it	and	it	then	instead	responds	with	the	full
contents	anyway.

You	can	make	curl	ask	for	a	range	with		-r		or		--range	.	If	you	want	the	first	200	bytes	out
of	something:

curl	-r	0-199	http://example.com

Or	everything	in	the	file	starting	from	index	200:

curl	-r	200-	http://example.com

Get	200	bytes	from	index	0	and	200	bytes	from	index	1000:

curl	-r	0-199,1000-199	http://example.com/

Ranges

170

HTTP	versions
As	any	other	Internet	protocol,	the	HTTP	protocol	has	kept	evolving	over	the	years	and	now
there	are	clients	and	servers	distributed	over	the	world	and	over	time	that	speak	different
versions	with	varying	levels	of	success.	So	in	order	to	get	libcurl	to	work	with	the	URLs	you
pass	in	libcurl	offers	ways	for	you	to	specify	which	HTTP	version	that	request	and	transfer
should	use.	libcurl	is	designed	in	a	way	so	that	it	tries	to	use	the	most	common,	the	most
sensible	if	you	want,	default	values	first	but	sometimes	that	isn't	enough	and	then	you	may
need	to	instruct	libcurl	what	to	do.

Since	perhaps	mid	2016,	curl	will	default	to	use	HTTP/1.1	for	HTTP	servers.	If	you	connect
to	HTTPS	and	you	have	a	libcurl	that	has	HTTP/2	abilities	built-in,	curl	will	attempt	to	use
HTTP/2	automatically	or	fall	down	to	1.1	in	case	the	negotiation	failed.	Non-HTTP/2	capable
curls	get	1.1	over	HTTPS	by	default.

If	the	default	isn't	good	enough	for	your	transfer,	the		CURLOPT_HTTP_VERSION		option	is	there
for	you.

Option Description

[default] fill	in

--http1.0 fill	in

--http1.1 fill	in

--http2 fill	in

--http2-prior-knowledge fill	in

HTTP	versions

171

HTTP	POST
POST	is	the	HTTP	method	that	was	invented	to	send	data	to	a	receiving	web	application,
and	it	is	how	most	common	HTML	forms	on	the	web	works.	It	usually	sends	a	chunk	of
relatively	small	amounts	of	data	to	the	receiver.

When	the	data	is	sent	by	a	browser	after	data	have	been	filled	in	a	form,	it	will	send	it	"URL
encoded",	as	a	serialized	name=value	pairs	separated	with	ampersand	symbols	('&').	You
send	such	data	with	curl's		-d		or		--data		option	like	this:

curl	-d	'name=admin&shoesize=12'	http://example.com/

When	specifying	multiple		-d		options	on	the	command	line,	curl	will	concatenate	them	and
insert	ampersands	in	between,	so	the	above	example	could	also	be	made	like	this:

curl	-d	name=admin	-d	shoesize=12	http://example.com/

If	the	amount	of	data	to	send	isn't	really	fit	to	put	in	a	mere	string	on	the	command	line,	you
can	also	read	it	off	a	file	name	in	standard	curl	style:

curl	-d	@filename	http://example.com

Content-Type

POSTing	with	curl's	-d	option	will	make	it	include	a	default	header	that	looks	like		Content-
Type:	application/x-www-form-urlencoded	.	That's	what	your	typical	browser	will	use	for	a
plain	POST.

Many	receivers	of	POST	data	don't	care	about	or	check	the	Content-Type	header.

If	that	header	is	not	good	enough	for	you,	you	should,	of	course,	replace	that	and	instead
provide	the	correct	one.	Such	as	if	you	POST	JSON	to	a	server	and	want	to	more	accurately
tell	the	server	about	what	the	content	is:

curl	-d	'{json}'	-H	'Content-Type:	application/json'	https://example.com

POSTing	binary

HTTP	POST

172

When	reading	from	a	file,		-d		will	strip	out	carriage	return	and	newlines.	Use		--data-
binary		if	you	want	curl	to	read	and	use	the	given	file	in	binary	exactly	as	given:

curl	--data-binary	@filename	http://example.com/

URL	encoding

The	command-line	options	above	all	require	that	you	provide	properly	encoded	data,	data
you	need	to	make	sure	is	in	the	right	format.	While	that	gives	you	a	lot	of	freedom,	it	is	also	a
bit	inconvenient	at	times.

To	help	you	send	data	you	haven't	already	encoded,	curl	offers	the		--data-urlencode	
option.	This	option	offers	several	different	ways	to	URL	encode	the	data	you	give	it.

You	use	it	like		--data-urlencode	data		in	the	same	style	as	the	other	--data	options.	To	be
CGI-compliant,	the	data	part	should	begin	with	a	name	followed	by	a	separator	and	a
content	specification.	The	data	part	can	be	passed	to	curl	using	one	of	the	following
syntaxes:

"content":	This	will	make	curl	URL	encode	the	content	and	pass	that	on.	Just	be	careful
so	that	the	content	doesn't	contain	any	=	or	@	symbols,	as	that	will	then	make	the
syntax	match	one	of	the	other	cases	below!

"=content":	This	will	make	curl	URL	encode	the	content	and	pass	that	on.	The	initial	'='
symbol	is	not	included	in	the	data.

"name=content":	This	will	make	curl	URL	encode	the	content	part	and	pass	that	on.
Note	that	the	name	part	is	expected	to	be	URL	encoded	already.

"@filename":	This	will	make	curl	load	data	from	the	given	file	(including	any	newlines),
URL	encode	that	data	and	pass	it	on	in	the	POST.

"name@filename":	This	will	make	curl	load	data	from	the	given	file	(including	any
newlines),	URL	encode	that	data	and	pass	it	on	in	the	POST.	The	name	part	gets	an
equal	sign	appended,	resulting	in	name=urlencoded-file-content.	Note	that	the	name	is
expected	to	be	URL	encoded	already.

As	an	example,	you	could	POST	a	name	to	have	it	encoded	by	curl:

curl	--data-urlencode	"name=John	Doe	(Junior)"	http://example.com

…which	would	send	the	following	data	in	the	actual	request	body:

HTTP	POST

173

name=John%20Doe%20%28Junior%29

Convert	that	to	a	GET

A	little	convenience	feature	that	could	be	suitable	to	mention	in	this	context	(even	though	it
isn't	for	POSTing),	is	the		-G		or		--get		option,	which	takes	all	data	you	have	specified	with
the	different		-d		variants	and	appends	that	data	on	the	right	end	of	the	URL	separated	with
a	'?'	and	then	makes	curl	send	a	GET	instead.

This	option	makes	it	easy	to	switch	between	POSTing	and	GETing	a	form,	for	example.

Expect	100-continue

HTTP	has	no	proper	way	to	stop	an	ongoing	transfer	(in	any	direction)	and	still	maintain	the
connection.	So,	if	we	figure	out	that	the	transfer	had	better	stop	after	the	transfer	has
started,	there	are	only	two	ways	to	proceed:	cut	the	connection	and	pay	the	price	of
reestablishing	the	connection	again	for	the	next	request,	or	keep	the	transfer	going	and
waste	bandwidth	but	be	able	to	reuse	the	connection	next	time.

One	example	of	when	this	can	happen	is	when	you	send	a	large	file	over	HTTP,	only	to
discover	that	the	server	requires	authentication	and	immediately	sends	back	a	401	response
code.

The	mitigation	that	exists	to	make	this	scenario	less	frequent	is	to	have	curl	pass	on	an	extra
header,		Expect:	100-continue	,	which	gives	the	server	a	chance	to	deny	the	request	before
a	lot	of	data	is	sent	off.	curl	sends	this	Expect:	header	by	default	if	the	POST	it	will	do	is
known	or	suspected	to	be	larger	than	just	minuscule.	curl	also	does	this	for	PUT	requests.

When	a	server	gets	a	request	with	an	100-continue	and	deems	the	request	fine,	it	will
respond	with	a	100	response	that	makes	the	client	continue.	If	the	server	doesn't	like	the
request,	it	sends	back	response	code	for	the	error	it	thinks	it	is.

Unfortunately,	lots	of	servers	in	the	world	don't	properly	support	the	Expect:	header	or	don't
handle	it	correctly,	so	curl	will	only	wait	1000	milliseconds	for	that	first	response	before	it	will
continue	anyway.

Those	are	1000	wasted	milliseconds.	You	can	then	remove	the	use	of	Expect:	from	the
request	and	avoid	the	waiting	with		-H	:

curl	-H	Expect:	-d	"payload	to	send"	http://example.com

HTTP	POST

174

In	some	situations,	curl	will	inhibit	the	use	of	the	Expect	header	if	the	content	it	is	about	to
send	is	very	small	(like	below	one	kilobyte),	as	having	to	"waste"	such	a	small	chunk	of	data
is	not	considered	much	of	a	problem.

Chunked	encoded	POSTs

When	talking	to	a	HTTP	1.1	server,	you	can	tell	curl	to	send	the	request	body	without	a
	Content-Length:		header	upfront	that	specifies	exactly	how	big	the	POST	is.	By	insisting	on
curl	using	chunked	Transfer-Encoding,	curl	will	send	the	POST	"chunked"	piece	by	piece	in
a	special	style	that	also	sends	the	size	for	each	such	chunk	as	it	goes	along.

You	send	a	chunked	POST	with	curl	like	this:

curl	-H	"Transfer-Encoding:	chunked"	-d	"payload	to	send"	http://example.com

Hidden	form	fields

This	chapter	has	explained	how	sending	a	post	with		-d		is	the	equivalent	of	what	a	browser
does	when	an	HTML	form	is	filled	in	and	submitted.

Submitting	such	forms	is	a	very	common	operation	with	curl;	effectively,	to	have	curl	fill	in	a
web	form	in	an	automated	fashion.

If	you	want	to	submit	a	form	with	curl	and	make	it	look	as	if	it	has	been	done	with	a	browser,
it	is	important	that	to	provide	all	the	input	fields	from	the	form.	A	very	common	method	for
web	pages	is	to	set	a	few	hidden	input	fields	to	the	form	and	have	them	assigned	values
directly	in	the	HTML.	A	successful	form	submission,	of	course,	also	include	those	fields	and
in	order	to	do	that	automatically	you	may	be	forced	to	first	download	the	HTML	page	that
holds	the	form,	parse	it	and	extract	the	hidden	field	values	so	that	you	can	send	them	off
with	curl.

Figure	out	what	a	browser	sends

A	very	common	shortcut	is	to	simply	fill	in	the	form	with	your	browser	and	submit	it	and
check	in	the	browser's	network	development	tools	exactly	what	it	sent.

A	slightly	different	way	is	to	save	the	HTML	page	containing	the	form,	and	then	edit	that
HTML	page	to	redirect	the	'action='	part	of	the	form	to	your	own	server	or	a	test	server	that
just	outputs	exactly	what	it	gets.	Completing	that	form	submission	will	then	show	you	exactly
how	a	browser	sends	it.

HTTP	POST

175

A	third	option	is,	of	course,	to	use	a	network	capture	tool	such	as	Wireshark	to	check	exactly
what	is	sent	over	the	wire.	If	you	are	working	with	HTTPS,	you	can't	see	form	submissions	in
clear	text	on	the	wire	but	instead	you	need	to	make	sure	you	can	have	Wireshark	extract
your	TLS	private	key	from	your	browser.	See	the	Wireshark	documentation	for	details	on
doing	that.

JavaScript	and	forms

A	very	common	mitigation	against	automated	"agents"	or	scripts	using	curl	is	to	have	the
page	with	the	HTML	form	use	JavaScript	to	set	values	of	some	input	fields,	usually	one	of
the	hidden	ones.	Often,	there's	some	JavaScript	code	that	executes	on	page	load	or	when
the	submit	button	is	pressed	which	sets	a	magic	value	that	the	server	then	can	verify	before
it	considers	the	submission	to	be	valid.

You	can	usually	work	around	that	by	just	reading	the	JavaScript	code	and	redoing	that	logic
in	your	script.	Using	the	above	mentioned	tricks	to	check	exactly	what	a	browser	sends	is
then	also	a	good	help.

HTTP	POST

176

HTTP	multipart	formposts
A	multipart	formpost	is	what	an	HTTP	client	sends	when	an	HTML	form	is	submitted	with
enctype	set	to	"multipart/form-data".

It	is	an	HTTP	POST	request	sent	with	the	request	body	specially	formatted	as	a	series	of
"parts",	separated	with	MIME	boundaries.

An	example	piece	of	HTML	would	look	like	this:

<form	action="submit.cgi"	method="post"	enctype="multipart/form-data">

			Name:	<input	type="text"	name="person">

			File:	<input	type="file"	name="secret">

			<input	type="submit"	value="Submit">

</form>	

Which	could	look	something	like	this	in	a	web	browser:

A	user	can	fill	in	text	in	the	'Name'	field	and	by	pressing	the	'Browse'	button	a	local	file	can
be	selected	that	will	be	uploaded	when	'Submit'	is	pressed.

Sending	such	a	form	with	curl

With	curl,	you	add	each	separate	multipart	with	one		-F		(or		--form)	flag	and	you	then
continue	and	add	one	-F	for	every	input	field	in	the	form	that	you	want	to	send.

The	above	small	example	form	has	two	parts,	one	named	'person'	that	is	a	plain	text	field
and	one	named	'secret'	that	is	a	file.

Send	your	data	to	that	form	like	this:

curl	-F	person=anonymous	-F	secret=@file.txt	http://example.com/submit.cgi

Multipart	formposts

177

The	HTTP	this	generates

The	action	specifies	where	the	POST	is	sent.	method	says	it	is	a	POST	and	enctype	tells
us	it	is	a	multipart	formpost.

With	the	fields	filled	in	as	shown	above,	curl	generates	and	sends	these	HTTP	request
headers	to	the	host	example.com:

POST	/submit.cgi	HTTP/1.1

Host:	example.com

User-Agent:	curl/7.46.0

Accept:	*/*

Content-Length:	313

Expect:	100-continue

Content-Type:	multipart/form-data;	boundary=------------------------d74496d66958873e

Content-Length,	of	course,	tells	the	server	how	much	data	to	expect.	This	example's	313
bytes	is	really	small.

The	Expect	header	is	explained	in	the	HTTP	POST	chapter.

The	Content-Type	header	is	a	bit	special.	It	tells	that	this	is	a	multipart	formpost	and	then	it
sets	the	"boundary"	string.	The	boundary	string	is	a	line	of	characters	with	a	bunch	of
random	digits	somewhere	in	it,	that	serves	as	a	separator	between	the	different	parts	of	the
form	that	will	be	submitted.	The	particular	boundary	you	see	in	this	example	has	the	random
part		d74496d66958873e		but	you	will,	of	course,	get	something	different	when	you	run	curl	(or
when	you	submit	such	a	form	with	a	browser).

So	after	that	initial	set	of	headers	follows	the	request	body

--------------------------d74496d66958873e

Content-Disposition:	form-data;	name="person"

anonymous

--------------------------d74496d66958873e

Content-Disposition:	form-data;	name="secret";	filename="file.txt"

Content-Type:	text/plain

contents	of	the	file

--------------------------d74496d66958873e--

Here	you	clearly	see	the	two	parts	sent,	separated	with	the	boundary	strings.	Each	part
starts	with	one	or	more	headers	describing	the	individual	part	with	its	name	and	possibly
some	more	details.	Then	after	the	part's	headers	come	the	actual	data	of	the	part,	without
any	sort	of	encoding.

Multipart	formposts

178

The	last	boundary	string	has	two	extra	dashes		--		appended	to	signal	the	end.

Content-Type

POSTing	with	curl's	-F	option	will	make	it	include	a	default	Content-Type	header	in	its
request,	as	shown	in	the	above	example.	This	says		multipart/form-data		and	then	specifies
the	MIME	boundary	string.	That	content-type	is	the	default	for	multipart	formposts	but	you
can,	of	course,	still	modify	that	for	your	own	commands	and	if	you	do,	curl	is	clever	enough
to	still	append	the	boundary	magic	to	the	replaced	header.	You	can't	really	alter	the
boundary	string,	since	curl	needs	that	for	producing	the	POST	stream.

To	replace	the	header,	use		-H		like	this:

curl	-F	'name=Dan'	-H	'Content-Type:	multipart/magic'	https://example.com

Converting	an	HTML	form

TBD

Multipart	formposts

179

-d	vs	-F
Previous	chapters	talked	about	regular	POST	and	multipart	formpost,	and	in	your	typical
command	lines	you	do	them	with		-d		or		-F	.

But	when	do	you	use	which	of	them?

As	described	in	the	chapters	mentioned	above,	both	these	options	send	the	specified	data	to
the	server.	The	difference	is	in	how	the	data	is	formatted	over	the	wire.	Most	of	the	time,	the
receiving	end	is	written	to	expect	a	specific	format	and	it	expects	that	the	sender	formats
and	sends	the	data	correctly.	A	client	cannot	just	pick	a	format	of	its	own	choice.

HTML	web	forms
When	we	are	talking	browsers	and	HTML,	the	standard	way	is	to	offer	a	form	to	the	user	that
sends	off	data	when	the	form	has	been	filled	in.	The		<form>		tag	is	what	makes	one	of	those
appear	on	the	web	page.	The	tag	instructs	the	browser	how	to	format	its	POST.	If	the	form
tag	includes		enctype=multipart/form-data	,	it	tells	the	browser	to	send	the	data	as	a
multipart	formpost	which	you	make	with	curl's		-F		option.	This	method	is	typically	used
when	the	form	includes	a		<input	type=file>		tag,	for	file	uploads.

The	default		enctype		used	by	forms,	which	is	rarely	spelled	out	in	HTML	since	it	is	default,	is
	application/x-www-form-urlencoded	.	It	makes	the	browser	"URL	encode"	the	input	as
name=value	pairs	with	the	data	encoded	to	avoid	unsafe	character.	We	often	refer	to	that	as
a	regular	POST,	and	you	perform	one	with	curl's		-d		and	friends.

POST	outside	of	HTML
POST	is	a	regular	HTTP	method	and	there	is	no	requirement	that	it	be	triggered	by	HTML	or
involve	a	browser.	Lots	of	services,	APIs	and	other	systems
allow	you	to	pass	in	data	these	days	in	order	to	get	things	done.

If	these	services	expect	plain	"raw"	data	or	perhaps	data	formatted	as	JSON	or	similar,	you
want	the	regular	POST	approach.	curl's		-d		option	won't	alter	or	encode	the	data	at	all	but
will	just	send	exactly	what	you	tell	it	to.	Just	pay	attention	to	-d's	default	Content-Type	as
that	might	not	be	what	you	want.

-d	vs	-F

180

-d	vs	-F

181

HTTP	redirects
The	“redirect”	is	a	fundamental	part	of	the	HTTP	protocol.	The	concept	was	present	and	is
documented	already	in	the	first	spec	(RFC	1945),	published	in	1996,	and	it	has	remained
well-used	ever	since.

A	redirect	is	exactly	what	it	sounds	like.	It	is	the	server	sending	back	an	instruction	to	the
client	instead	of	giving	back	the	contents	the	client	wanted.	The	server	basically	says	“go
look	over	here	instead	for	that	thing	you	asked	for“.

But	not	all	redirects	are	alike.	How	permanent	is	the	redirect?	What	request	method	should
the	client	use	in	the	next	request?

All	redirects	also	need	to	send	back	a		Location:		header	with	the	new	URI	to	ask	for,	which
can	be	absolute	or	relative.

Permanent	and	temporary
Is	the	redirect	meant	to	last	or	just	remain	valid	for	now?	If	you	want	a	GET	to	permanently
redirect	users	to	resource	B	with	another	GET,	send	back	a	301.	It	also	means	that	the	user-
agent	(browser)	is	meant	to	cache	this	and	keep	going	to	the	new	URI	from	now	on	when
the	original	URI	is	requested.

The	temporary	alternative	is	302.	Right	now	the	server	wants	the	client	to	send	a	GET
request	to	B,	but	it	shouldn't	cache	this	but	keep	trying	the	original	URI	when	directed	to	it
next	time.

Note	that	both	301	and	302	will	make	browsers	do	a	GET	in	the	next	request,	which	possibly
means	changing	the	method	if	it	started	with	a	POST	(and	only	if	POST).	This	changing	of
the	HTTP	method	to	GET	for	301	and	302	responses	is	said	to	be	“for	historical	reasons”,
but	that’s	still	what	browsers	do	so	most	of	the	public	web	will	behave	this	way.

In	practice,	the	303	code	is	very	similar	to	302.	It	will	not	be	cached	and	it	will	make	the
client	issue	a	GET	in	the	next	request.	The	differences	between	a	302	and	303	are	subtle,
but	303	seems	to	be	more	designed	for	an	“indirect	response”	to	the	original	request	rather
than	just	a	redirect.

These	three	codes	were	the	only	redirect	codes	in	the	HTTP/1.0	spec.

curl	however,	doesn't	remember	or	cache	any	redirects	at	all	so	to	it,	there's	really	no
difference	between	permanent	and	temporary	redirects.

Redirects

182

Tell	curl	to	follow	redirects
In	curl's	tradition	of	only	doing	the	basics	unless	you	tell	it	differently,	it	doesn't	follow	HTTP
redirects	by	default.	Use	the		-L,	--location		to	tell	it	to	do	that.

When	following	redirects	is	enabled,	curl	will	follow	up	to	50	redirects	by	default.	There's	a
maximum	limit	mostly	to	avoid	the	risk	of	getting	caught	in	endless	loops.	If	50	isn't	sufficient
for	you,	you	can	change	the	maximum	number	of	redirects	to	follow	with	the		--max-redirs	
option.

GET	or	POST?
All	three	of	these	response	codes,	301	and	302/303,	will	assume	that	the	client	sends	a	GET
to	get	the	new	URI,	even	if	the	client	might	have	sent	a	POST	in	the	first	request.	This	is
very	important,	at	least	if	you	do	something	that	doesn't	use	GET.

If	the	server	instead	wants	to	redirect	the	client	to	a	new	URI	and	wants	it	to	send	the	same
method	in	the	second	request	as	it	did	in	the	first,	like	if	it	first	sent	POST	it’d	like	it	to	send
POST	again	in	the	next	request,	the	server	would	use	different	response	codes.

To	tell	the	client	“the	URI	you	sent	a	POST	to,	is	permanently	redirected	to	B	where	you
should	instead	send	your	POST	now	and	in	the	future”,	the	server	responds	with	a	308.	And
to	complicate	matters,	the	308	code	is	only	recently	defined	(the	spec	was	published	in	June
2014)	so	older	clients	may	not	treat	it	correctly!	If	so,	then	the	only	response	code	left	for	you
is…

The	(older)	response	code	to	tell	a	client	to	send	a	POST	also	in	the	next	request	but
temporarily	is	307.	This	redirect	will	not	be	cached	by	the	client	though,	so	it’ll	again	post	to
A	if	requested	to	again.	The	307	code	was	introduced	in	HTTP/1.1.

Oh,	and	redirects	work	the	exact	same	way	in	HTTP/2	as	they	do	in	HTTP/1.1.

Permanent Temporary

Switch	to	GET 301 302	and	303

Keep	original	method 308 307

Decide	what	method	to	use	in	redirects

It	turns	out	that	there	are	web	services	out	there	in	the	world	that	want	a	POST	sent	to	the
original	URL,	but	are	responding	with	HTTP	redirects	that	use	a	301,	302	or	303	response
codes	and	still	want	the	HTTP	client	to	send	the	next	request	as	a	POST.	As	explained

Redirects

183

https://tools.ietf.org/html/rfc7238#section-3

above,	browsers	won’t	do	that	and	neither	will	curl—by	default.

Since	these	setups	exist,	and	they’re	actually	not	terribly	rare,	curl	offers	options	to	alter	its
behavior.

You	can	tell	curl	to	not	change	the	non-GET	request	method	to	GET	after	a	30x	response	by
using	the	dedicated	options	for	that:		--post301	,		--post302		and		--post303	.	If	you	are
instead	writing	a	libcurl	based	application,	you	control	that	behavior	with	the
	CURLOPT_POSTREDIR		option.

Redirecting	to	other	host	names
When	you	use	curl	you	may	provide	credentials	like	user	name	and	password	for	a	particular
site,	but	since	a	HTTP	redirect	might	very	well	move	away	to	a	different	host	curl	limits	what
it	sends	away	to	other	hosts	than	the	original	within	the	same	"transfer".

So	if	you	want	the	credentials	to	also	get	sent	to	the	following	host	names	even	though	they
are	not	the	same	as	the	original—presumably	because	you	trust	them	and	know	that	there's
no	harm	in	doing	that—you	can	tell	curl	that	it	is	fine	to	do	so	by	using	the		--location-
trusted		option.

Non-HTTP	redirects
Browsers	support	more	ways	to	do	redirects	that	sometimes	make	life	complicated	to	a	curl
user	as	these	methods	are	not	supported	or	recognized	by	curl.

HTML	redirects
If	the	above	wasn't	enough,	the	web	world	also	provides	a	method	to	redirect	browsers	by
plain	HTML.	See	the	example		<meta>		tag	below.	This	is	somewhat	complicated	with	curl
since	curl	never	parses	HTML	and	thus	has	no	knowledge	of	these	kinds	of	redirects.

<meta	http-equiv="refresh"	content="0;	url=http://example.com/">

JavaScript	redirects
The	modern	web	is	full	of	JavaScript	and	as	you	know,	JavaScript	is	a	language	and	a	full
run	time	that	allows	code	to	execute	in	the	browser	when	visiting	web	sites.

Redirects

184

JavaScript	also	provides	means	for	it	to	instruct	the	browser	to	move	on	to	another	site—a
redirect,	if	you	will.

Redirects

185

Modify	the	HTTP	request
As	described	earlier,	each	HTTP	transfer	starts	with	curl	sending	a	HTTP	request.	That
request	consists	of	a	request	line	and	a	number	of	request	headers,	and	this	chapter	details
how	you	can	modify	all	of	those.

Request	method

The	first	line	of	the	request	includes	the	method.	When	doing	a	simple	GET	request	as	this
command	line	would	do:

curl	http://example.com/file

…that	initial	request	line	would	look	like	this:

GET	/file	HTTP/1.1

You	can	tell	curl	to	change	the	method	into	something	else	by	using	the		-X		or		--request	
command-line	options	followed	by	the	actual	method	name.	You	can,	for	example,	send	a
DELETE	instead	like	this:

curl	http://example.com/file	-X	DELETE

This	command-line	option	only	changes	the	text	in	the	outgoing	request,	it	does	not	change
any	behavior.	This	is	particularly	important	if	you,	for	example,	ask	curl	to	send	a	HEAD	with
-X,	as	HEAD	is	specified	to	send	all	the	headers	a	GET	response	would	get	but	never	send
a	response	body,	even	if	the	headers	otherwise	imply	that	one	would	come.	So,	adding		-X
HEAD		to	a	command	line	that	would	otherwise	do	a	GET	will	cause	curl	to	hang,	waiting	for	a
response	body	that	won't	come.

Customize	headers

TBD

Referer

TBD

Modify	the	HTTP	request

186

User-agent

TBD

--time-cond

TBD

Modify	the	HTTP	request

187

PUT
The	difference	between	a	PUT	and	a	POST	is	subtle.	They	are	virtually	identical
transmissions	except	for	the	different	method	strings.	Where	POST	is	meant	to	pass	on	data
to	a	remote	resource,	PUT	is	supposed	to	be	the	new	version	of	that	resource.

In	that	aspect,	PUT	is	similar	to	good	old	standard	file	upload	found	in	other	protocols.	You
upload	a	new	version	of	the	resource	with	PUT.	The	URL	identifies	the	resource	and	you
point	out	the	local	file	to	put	there:

curl	-T	localfile	http://example.com/new/resource/file

…so	-T	will	imply	a	PUT	and	tell	curl	which	file	to	send	off.	But	the	similarities	between
POST	and	PUT	also	allows	you	to	send	a	PUT	with	a	string	by	using	the	regular	curl	POST
mechanism	using		-d		but	asking	for	it	to	use	a	PUT	instead:

curl	-d	"data	to	PUT"	-X	PUT	http://example.com/new/resource/file

HTTP	PUT

188

Cookies
HTTP	cookies	are	key/value	pairs	that	a	client	stores	on	the	behalf	of	a	server.	They	are
sent	back	in	subsequent	requests	to	allow	clients	to	keep	state	between	requests.
Remember	that	the	HTTP	protocol	itself	has	no	state	but	instead	the	client	has	to	resend	all
data	in	subsequent	requests	that	it	wants	the	server	to	be	aware	of.

Cookies	are	set	by	the	server	with	the		Set-Cookie:		header	and	with	each	cookie	the	server
sends	a	bunch	of	extra	properties	that	need	to	match	for	the	client	to	send	the	cookie	back.
Like	domain	name	and	path	and	perhaps	most	important	for	how	long	the	cookie	should	live
on.

The	expiry	of	a	cookie	is	either	set	to	a	fixed	time	in	the	future	(or	to	live	a	number	of
seconds)	or	it	gets	no	expiry	at	all.	A	cookie	without	an	expire	time	is	called	a	"session
cookie"	and	is	meant	to	live	for	the	duration	of	the	"session"	but	not	longer.	A	session	in	this
aspect	is	typically	thought	to	be	the	life	time	of	the	browser	used	to	view	a	site.	When	you
close	the	browser,	you	end	your	session.	Doing	HTTP	operations	with	a	command-line	client
that	supports	cookies	begs	the	question	of	when	a	session	really	ends…

Cookie	engine

The	general	concept	of	curl	only	doing	the	bare	minimum	unless	you	tell	it	differently	makes
it	not	acknowledge	cookies	by	default.	You	need	to	switch	on	"the	cookie	engine"	to	make
curl	keep	track	of	cookies	it	receives	and	then	subsequently	send	them	out	on	requests	that
have	matching	cookies.

You	enable	the	cookie	engine	by	asking	curl	to	read	or	write	cookies.	If	you	tell	curl	to	read
cookies	from	a	non-existing	file,	you	will	only	switch	on	the	engine	but	start	off	with	an	empty
internal	cookie	store:

curl	-b	non-existing	http://example.com

But	just	switching	on	the	cookie	engine,	getting	a	single	resource	and	then	quitting	would	be
pointless	as	curl	would	have	no	chance	to	actually	send	any	cookies	it	received.	Assuming
the	site	in	this	example	would	set	cookies	and	then	do	a	redirect	we	would	do:

curl	-L	-b	non-existing	http://example.com

Reading	cookies	from	file

Cookies

189

Starting	off	with	a	blank	cookie	store	may	not	be	desirable.	Why	not	start	off	with	cookies
you	stored	in	a	previous	fetch	or	that	you	otherwise	acquired?	The	file	format	curl	uses	for
cookies	is	called	the	Netscape	cookie	format	because	it	was	once	the	file	format	used	by
browsers	and	then	you	could	easily	tell	curl	to	use	the	browser's	cookies!

As	a	convenience,	curl	also	supports	a	cookie	file	being	a	set	of	HTTP	headers	that	set
cookies.	It's	an	inferior	format	but	may	be	the	only	thing	you	have.

Tell	curl	which	file	to	read	the	initial	cookies	from:

curl	-L	-b	cookies.txt	http://example.com

Remember	that	this	only	reads	from	the	file.	If	the	server	would	update	the	cookies	in	its
response,	curl	would	update	that	cookie	in	its	in-memory	store	but	then	eventually	throw
them	all	away	when	it	exits	and	a	subsequent	invocation	of	the	same	input	file	would	use	the
original	cookie	contents	again.

Writing	cookies	to	file

The	place	where	cookies	are	stored	is	sometimes	referred	to	as	the	"cookie	jar".	When	you
enable	the	cookie	engine	in	curl	and	it	has	received	cookies,	you	can	instruct	curl	to	write
down	all	its	known	cookies	to	a	file,	the	cookie	jar,	before	it	exists.	It	is	important	to
remember	that	curl	only	updates	the	output	cookie	jar	on	exit	and	not	during	its	lifetime,	no
matter	how	long	the	handling	of	the	given	input	takes.

You	point	out	the	cookie	jar	output	with		-c	:

curl	-c	cookie-jar.txt	http://example.com

	-c		is	the	instruction	to	write	cookies	to	a	file,		-b		is	the	instruction	to	read	cookies	from	a
file.	Oftentimes	you	want	both.

When	curl	writes	cookies	to	this	file,	it	will	save	all	known	cookies	including	those	that	are
session	cookies	(without	a	given	lifetime).	curl	itself	has	no	notion	of	a	session	and	it	doesn't
know	when	a	session	ends	so	it	will	not	flush	session	cookies	unless	you	tell	it	to.

New	cookie	session

Instead	of	telling	curl	when	a	session	ends,	in	order	to	flush	session	cookies	and	with	this
basically	signal	to	the	server	that	we	are	starting	a	new	session,	curl	features	an	option	that
lets	the	user	decide	when	a	new	session	begins.

Cookies

190

A	new	cookie	session	means	that	all	the	session	cookies	will	be	thrown	away.	It	is	the
equivalent	of	closing	a	browser	and	starting	it	up	again.

Tell	curl	a	new	cookie	session	starts	by	using		-j,	--junk-session-cookies	:

curl	-j	-b	cookies.txt	http://example.com/

Cookies

191

HTTP/2
curl	supports	HTTP/2	for	both	HTTP://	and	HTTPS://	URLs	assuming	that	curl	was	built	with
the	proper	prerequisites.	It	will	even	default	to	using	HTTP/2	when	given	a	HTTPS	URL
since	doing	so	implies	no	penalty	and	when	curl	is	used	with	sites	that	don't	support	HTTP/2
the	request	will	instead	negotiate	HTTP/1.1.

With	HTTP://	URLs	however,	the	upgrade	to	HTTP/2	is	done	with	an		Upgrade:		header	that
may	cause	an	extra	round-trip	and	perhaps	even	more	troublesome,	a	sizable	share	of	old
servers	will	return	a	400	response	when	seeing	such	a	header.

It	should	also	be	noted	that	some	(most?)	servers	that	support	HTTP/2	for	HTTP://	(which	in
itself	isn't	all	servers)	will	not	acknowledge	the		Upgrade:		header	on	POST,	for	example.

To	ask	a	server	to	use	HTTP/2,	just:

curl	--http2	http://example.com/

If	your	curl	doesn't	support	HTTP/2,	that	command	line	will	return	an	error	saying	so.
Running		curl	-V		will	show	if	your	version	of	curl	supports	it.

If	you	by	some	chance	already	know	that	your	server	speaks	HTTP/2	(for	example,	within
your	own	controlled	environment	where	you	know	exactly	what	runs	in	your	machines)	you
can	shortcut	the	HTTP/2	"negotiation"	with		--http2-prior-knowledge	.

Multiplexing

One	of	the	primary	features	in	the	HTTP/2	protocol	is	the	ability	to	multiplex	several	logical
stream	over	the	same	physical	connection.	When	using	the	curl	command-line	tool,	you
cannot	take	advantage	of	that	cool	feature	since	curl	is	doing	all	its	network	requests	in	a
strictly	serial	manner,	one	after	the	next,	with	the	second	only	ever	starting	once	the
previous	one	has	ended.

Hopefully,	a	future	curl	version	will	be	enhanced	to	allow	the	use	of	this	feature.

HTTP/2

192

curl	cheat	sheet
online	here

Verbose Hide	progress extra	info Write
output Timeout

-v -s -w	"format" -O -m

--trace-ascii -o

POST multipart PUT HEAD custom

-d	"string" -F	name=value -T -I -X
"METHOD"

-d	@file -F	name=@file

Basic	auth read	cookies write
cookies

send
cookies user-agent

-u
user:password -b -c -b	"c=1;

d=2" -A	"string"

Use	proxy Headers,
add/remove

follow
redirs gzip insecure

-x -H	"name:	value" -L --
compressed -k

-H	"name:"

HTTP	cheat	sheet

193

https://bagder.github.io/curl-cheat-sheet/http-sheet.html

Building	and	installing
The	source	code	for	this	project	is	written	in	a	way	that	allows	it	to	get	compiled	and	built	on
just	about	any	operating	system	and	platform,	with	as	few	restraints	and	requirements	as
possible.

If	you	have	a	32bit	(or	larger)	CPU	architecture,	if	you	have	a	C89	compliant	compiler	and	if
you	have	roughly	a	POSIX	supporting	sockets	API,	then	you	can	most	likely	build	curl	and
libcurl	for	your	target	system.

For	the	most	popular	platforms,	the	curl	project	comes	with	build	systems	already	done	and
prepared	to	allow	you	to	easily	build	it	yourself.

There	are	also	friendly	people	and	organizations	who	put	together	binary	packages	of	curl
and	libcurl	and	make	them	available	for	download.	The	different	options	will	be	explored
below.

The	latest	version?
Looking	at	the	curl	web	site	at	https://curl.haxx.se	you	can	see	the	latest	curl	and	libcurl
version	released	from	the	project.	That's	the	latest	source	code	package	you	can	get.

When	you	opt	for	a	prebuilt	and	prepackaged	version	for	your	operating	system	or
distribution	of	choice,	you	may	not	always	find	the	latest	version	but	you	might	have	to	either
be	satisfied	with	the	latest	version	someone	has	packaged	for	your	environment,	or	you
need	to	build	it	yourself	from	source.

The	curl	project	also	provides	info	about	the	latest	version	in	a	somewhat	more	machine-
readable	format	on	this	URL:		https://curl.haxx.se/info	.

off	git!
Of	course,	when	building	from	source	you	can	also	always	opt	to	build	the	very	latest	version
that	exist	in	the	git	repository.	It	could	however	be	a	bit	more	fragile	and	probably	requires
slightly	more	attention	to	detail.

Building	and	installing

194

https://curl.haxx.se
https://github.com/curl/curl

Installing	prebuilt	binaries
There	are	many	friendly	people	and	organizations	who	put	together	binary	packages	of	curl
and	libcurl	and	make	them	available	for	download.

Many	operating	systems	offer	a	"package	repository"	that	is	populated	with	software
packages	for	you	to	install.	From	the	curl	download	page	you	can	also	follow	links	to	plain
binary	packages	for	popular	operating	systems.

Installing	from	your	package	repository
curl	and	libcurl	have	been	around	for	a	very	long	time	and	most	Linux	distributions,	BSD
versions	and	other	*nix	versions	have	package	repositories	that	allow	you	to	install	curl
packages.

The	most	common	ones	are	described	below.

apt-get

	apt-get		is	a	tool	to	install	prebuilt	packages	on	Debian	Linux	and	Ubuntu	Linux
distributions	and	derivates.

To	install	the	curl	command-line	tool,	you	usually	just

apt-get	install	curl

…and	that	then	makes	sure	the	dependencies	are	installed	and	usually	libcurl	is	then	also
installed	as	an	individual	package.

If	you	want	to	build	applications	against	libcurl,	you	need	a	development	package	installed	to
get	the	include	headers	and	some	additional	documentation,	etc.	You	can	then	select	a
libcurl	with	the	TLS	backend	you	prefer:

apt-get	install	libcurl4-openssl-dev

or

apt-get	install	libcurl4-nss-dev

Installing	prebuilt	binaries

195

https://curl.haxx.se/download.html

or

apt-get	install	libcurl4-gnutls-dev

yum

With	Redhat	Linux	and	CentOS	Linux	derivates,	you	use		yum		to	install	packages.	Install	the
command-line	tool	with:

yum	install	curl

You	install	the	libcurl	development	package	(with	include	files	and	some	docs,	etc.)	with	this:

yum	install	curl-devel

(The	Redhat	family	of	Linux	systems	usually	ship	curl	built	to	use	NSS	as	TLS	backend.)

homebrew

TBD

cygwin

TBD

Binary	packages	for	Windows
TBD

Installing	prebuilt	binaries

196

Build	from	source
The	curl	project	creates	source	code	that	can	be	built	to	produce	the	two	products	curl	and
libcurl.	The	conversion	from	source	code	to	binaries	is	often	referred	to	as	"building".	You
build	curl	and	libcurl	from	source.

The	curl	project	doesn't	provide	any	built	binaries	at	all,	it	only	ships	the	source	code.	The
binaries	which	can	be	found	on	the	download	page	of	the	curl	web	and	installed	from	other
places	on	the	Internet	are	all	built	and	provided	to	the	world	by	other	friendly	people	and
organizations.

The	source	code	consists	of	a	large	number	of	files	containing	C	code.	Generally	speaking,
the	same	set	of	files	are	used	to	build	binaries	for	all	platforms	and	computer	architectures
that	curl	supports.	curl	can	be	built	and	run	on	a	vast	number	of	different	platforms.	If	you
use	a	rare	operating	system	yourself,	chances	are	that	building	curl	from	source	is	the
easiest	or	perhaps	the	only	way	to	get	curl.

Making	it	easy	to	build	curl	is	a	priority	to	the	curl	project,	although	we	don't	always
necessarily	succeed!

git	vs	tarballs
When	release	tarballs	are	created,	a	few	files	are	generated	and	included	in	the	final	release
file.	Those	generated	files	are	not	present	in	the	git	repository,	because	they	are	generated
and	there	is	no	need	to	store	them	in	git.

So,	if	you	want	to	build	curl	from	git	you	need	to	generate	some	of	those	files	yourself	before
you	can	build.	On	Linux	and	Unix	systems,	do	this	by	running		./buildconf		and	on	Windows
you	run		buildconf.bat	.

On	Linux	and	Unix-like	systems
There	are	two	distinctly	different	ways	to	build	curl	on	Linux	and	other	Unix-like	systems.
There's	the	one	using	the	configure	script	and	there's	the	CMake	approach.

There	are	two	different	build	environments	to	cater	for	people's	different	opinions	and	tastes.
The	configure	based	build	is	arguably	the	more	mature	and	more	complete	build	system	and
should	probably	be	considered	the	default	one.

Build	from	source

197

Autotools

The	"Autotools"	is	a	collection	of	different	tools	that	used	together	generate	the		configure	
script.	The	configure	script	is	run	by	the	user	who	wants	to	build	curl	and	it	does	a	whole
bunch	of	things:

it	checks	for	features	and	functions	present	in	your	system

it	offers	command-line	options	so	that	you	as	a	builder	can	decide	what	to	enable	and
disable	in	the	build.	Features	and	protocols,	etc.,	can	be	toggled	on/off.	Or	even
compiler	warning	levels	and	more.

it	offers	command-line	options	to	let	the	builder	point	to	specific	installation	paths	for
various	third-party	dependencies	that	curl	can	be	built	to	use.

specifies	on	which	file	path	the	generated	installation	should	be	placed	when	ultimately
the	build	is	made	and	"make	install"	is	invoked

In	the	most	basic	usage,	just	running		./configure		in	the	source	directory	is	enough.	When
the	script	completes,	it	outputs	a	summary	of	what	options	it	has	detected/enabled	and	what
features	that	are	still	disabled,	some	of	them	possibly	because	it	failed	to	detect	the
presence	of	necessary	third-party	dependencies	that	are	needed	for	those	functions	to	work.

Then	you	invoke		make		to	build	the	entire	thing	and		make	install		to	install	curl,	libcurl	and
associated	things.		make	install		requires	that	you	have	the	correct	rights	in	your	system	to
create	and	write	files	in	the	installation	directory	or	you	will	get	some	errors.

cross-compiling

Cross-compiling	means	that	you	build	the	source	on	one	architecture	but	the	output	is
created	to	be	run	on	a	different	one.	For	example,	you	could	build	the	source	on	a	Linux
machine	but	have	the	output	work	to	run	on	a	Windows	machine.

For	cross-compiling	to	work,	you	need	a	dedicated	compiler	and	build	system	setup	for	the
particular	target	system	for	which	you	want	to	build.	How	to	get	and	install	that	system	is	not
covered	in	this	book.

Once	you	have	a	cross	compiler,	you	can	instruct	configure	to	use	that	compiler	instead	of
the	"native"	compiler	when	it	builds	curl	so	that	the	end	result	then	can	be	moved	over	and
used	on	the	other	machine.

CMake

TBD

Build	from	source

198

static	linking

TBD

On	Windows
TBD

make

TBD

CMake

TBD

other	compilers

TBD

On	other	systems
TBD

Porting	curl	to	non-supported	systems
TBD

Select	TLS	backend
The	configure	based	build	offers	the	user	to	select	from	a	wide	variety	of	different	TLS
libraries	when	building.	You	select	them	by	using	the	correct	command	line	options.

The	default	OpenSSL	configure	check	will	also	detect	and	use	BoringSSL	or	libressl.

GnuTLS:		--without-ssl	--with-gnutls	.
Cyassl:		--without-ssl	--with-cyassl	
NSS:		--without-ssl	--with-nss	
PolarSSL:		--without-ssl	--with-polarssl	

Build	from	source

199

mbedTLS:		--without-ssl	--with-mbedtls	
axTLS:		--without-ssl	--with-axtls	
schannel:		--without-ssl	--with-winssl	
secure	transport:		--with-winssl	--with-darwinssl	

Build	from	source

200

Dependencies
A	key	to	making	good	software	is	to	build	on	top	of	other	great	software.	By	using	libraries
that	many	others	use,	we	reinvent	the	same	things	fewer	times	and	we	get	more	reliable
software	as	there	are	more	people	using	the	same	code.

A	whole	slew	of	features	that	curl	provides	require	that	it	is	built	to	use	one	or	more	external
libraries.	They	are	then	dependencies	of	curl.	None	of	them	are	required,	but	most	users	will
want	to	use	at	least	some	of	them.

zlib
http://zlib.net/

curl	can	do	automatic	decompression	of	data	transferred	over	HTTP	if	built	with	zlib.	Getting
compressed	data	over	the	wire	will	use	less	bandwidth.

c-ares
https://c-ares.haxx.se/

curl	can	be	built	with	c-ares	to	be	able	to	do	asynchronous	name	resolution.	Another	option
to	enable	asynchronous	name	resolution	is	to	build	curl	with	the	threaded	name	resolver
backend,	which	will	then	instead	create	a	separate	helper	thread	for	each	name	resolve.	c-
ares	does	it	all	within	the	same	thread.

libssh2
https://libssh2.org/

When	curl	is	built	with	libssh2,	it	enables	support	for	the	SCP	and	SFTP	protocols.

nghttp2
https://nghttp2.org/

This	is	a	library	for	handling	HTTP/2	framing	and	is	a	prerequisite	for	curl	to	support	HTTP
version	2.

Dependencies

201

http://zlib.net/
https://c-ares.haxx.se/
https://libssh2.org/
https://nghttp2.org/

openldap
https://www.openldap.org/

This	library	is	one	option	to	allow	curl	to	get	support	for	the	LDAP	and	LDAPS	URL
schemes.	On	Windows,	you	can	also	opt	to	build	curl	to	use	the	winssl	library.

librtmp
https://rtmpdump.mplayerhq.hu/

To	enable	curl's	support	for	the	RTMP	URL	scheme,	you	must	build	curl	with	the	librtmp
library	that	comes	from	the	RTMPDump	project.

libmetalink
https://launchpad.net/libmetalink

Build	curl	with	libmetalink	to	have	it	support	the	metalink	format,	which	allows	curl	to
download	the	same	file	from	multiple	places.	It	includes	checksums	and	more.	See	curl's	--
metalink	option.

libpsl
https://rockdaboot.github.io/libpsl/

When	you	build	curl	with	support	for	libpsl,	the	cookie	parser	will	know	about	the	Public
Suffix	List	and	thus	handle	such	cookies	appropriately.

libidn2
https://www.gnu.org/software/libidn/libidn2/manual/libidn2.html

curl	handles	International	Domain	Names	(IDN)	with	the	help	of	the	libidn2	library.

TLS	libraries
There	are	many	different	TLS	libraries	to	choose	from,	so	they	are	covered	in	a	separate
section.

Dependencies

202

https://www.openldap.org/
https://rtmpdump.mplayerhq.hu/
https://launchpad.net/libmetalink
http://www.metalinker.org/
https://curl.haxx.se/docs/manpage.html#--metalink
https://rockdaboot.github.io/libpsl/
https://www.gnu.org/software/libidn/libidn2/manual/libidn2.html

Dependencies

203

Build	to	use	a	TLS	library
To	make	curl	support	TLS	based	protocols,	such	as	HTTPS,	FTPS,	SMTPS,	POP3S,	IMAPS
and	more,	you	need	to	build	with	a	third-party	TLS	library	since	curl	doesn't	implement	the
TLS	protocol	itself.

curl	is	written	to	work	with	a	large	number	of	TLS	libraries:

BoringSSL
GSkit	(OS/400	specific)
GnuTLS
NSS
OpenSSL
Secure	Transport	(native	macOS)
WolfSSL
axTLS
libressl
mbedTLS
Schannel	(native	Windows)

When	you	build	curl	and	libcurl	to	use	one	of	these	libraries,	it	is	important	that	you	have	the
library	and	its	include	headers	installed	on	your	build	machine.

configure
Below,	you	will	learn	how	to	tell	configure	to	use	the	different	libraries.	Note	that	for	all
libraries	except	OpenSSL	and	its	siblings,	you	must	disable	the	check	for	OpenSSL	by	using
	--without-ssl	.

OpenSSL,	BoringSSL,	libressl

./configure

configure	will	detect	OpenSSL	in	its	default	path	by	default.	You	can	optionally	point
configure	to	a	custom	install	path	prefix	where	it	can	find	openssl:

./configure	--with-ssl=/home/user/installed/openssl

TLS	libraries

204

The	alternatives	BoringSSL	and	libressl	look	similar	enough	that	configure	will	detect	them
the	same	way	as	OpenSSL	but	it	will	use	some	additional	measures	to	find	out	which	of	the
particular	flavors	it	is	using.

GnuTLS

./configure	--with-gnutls	--without-ssl

configure	will	detect	GnuTLS	in	its	default	path	by	default.	You	can	optionally	point	configure
to	a	custom	install	path	prefix	where	it	can	find	gnutls:

./configure	--with-gnutls=/home/user/installed/gnutls	--without-ssl

NSS

./configure	--with-nss	--without-ssl

configure	will	detect	NSS	in	its	default	path	by	default.	You	can	optionally	point	configure	to
a	custom	install	path	prefix	where	it	can	find	nss:

./configure	--with-nss=/home/user/installed/nss	--without-ssl

WolfSSL

./configure	--with-cyassl	--without-ssl

(cyassl	was	the	former	name	of	the	library)	configure	will	detect	WolfSSL	in	its	default	path
by	default.	You	can	optionally	point	configure	to	a	custom	install	path	prefix	where	it	can	find
WolfSSL:

./configure	--with-cyassl=/home/user/installed/nss	--without-ssl

axTLS

./configure	--with-axtls	--without-ssl

TLS	libraries

205

configure	will	detect	axTLS	in	its	default	path	by	default.	You	can	optionally	point	configure
to	a	custom	install	path	prefix	where	it	can	find	axTLS:

./configure	--with-axtls=/home/user/installed/axtls	--without-ssl

mbedTLS

./configure	--with-mbedtls	--without-ssl

configure	will	detect	mbedTLS	in	its	default	path	by	default.	You	can	optionally	point
configure	to	a	custom	install	path	prefix	where	it	can	find	mbedTLS:

./configure	--with-mbedtls=/home/user/installed/mbedtls	--without-ssl

Secure	Transport

./configure	--with-darwinssl	--without-ssl

(DarwinSSL	is	an	alternative	name	for	Secure	Transport)	configure	will	detect	Secure
Transport	in	its	default	path	by	default.	You	can	optionally	point	configure	to	a	custom	install
path	prefix	where	it	can	find	DarwinSSL:

./configure	--with-darwinssl=/home/user/installed/darwinssl	--without-ssl

Schannel

./configure	--with-winssl	--without-ssl

(WinSSL	is	an	alternative	name	for	Schannel)	configure	will	detect	Schannel	in	its	default
path	by	default.	You	can	optionally	point	configure	to	a	custom	install	path	prefix	where	it	can
find	WinSSL:

./configure	--with-winssl=/home/user/installed/winssl	--without-ssl

TLS	libraries

206

Build	curl	with	boringssl

build	boringssl
$HOME/src	is	where	I	put	the	code	in	this	example.	You	can	pick	wherever	you	like.

$	cd	$HOME/src

$	git	clone	https://boringssl.googlesource.com/boringssl

$	cd	boringssl

$	mkdir	build

$	cd	build

$	cmake	..

$	make

set	up	the	build	tree	to	get	detected	by	curl's
configure
In	the	boringssl	source	tree	root,	make	sure	there's	a		lib		and	an		include		dir.	The		lib	
dir	should	contain	the	two	libs	(I	made	them	symlinks	into	the	build	dir).	The		include		dir	is
already	present	by	default.	Make	and	populate		lib		like	this	(commands	issued	in	the
source	tree	root,	not	in	the		build/		subdirectory).

$	mkdir	lib

$	cd	lib

$	ln	-s	../build/ssl/libssl.a

$	ln	-s	../build/crypoto/libcrypto.a

configure	curl
	LIBS=-lpthread	./configure	--with-ssl=$HOME/src/boringssl		(where	I	point	out	the	root	of
the	boringssl	tree)

Verify	that	at	the	end	of	the	configuration,	it	says	it	detected	BoringSSL	to	be	used.

build	curl
Run		make		in	the	curl	source	tree.

BoringSSL

207

Now	you	can	install	curl	normally	with		make	install		etc.

BoringSSL

208

libcurl	basics
The	engine	in	the	curl	command-line	tool	is	libcurl.	libcurl	is	also	the	engine	in	thousands	of
tools,	services	and	applications	out	there	today,	performing	their	Internet	data	transfers.

Transfer	oriented
We	have	designed	libcurl	to	be	transfer	oriented	usually	without	forcing	users	to	be	protocol
experts	or	in	fact	know	much	at	all	about	networking	or	the	protocols	involved.	You	setup	a
transfer	with	as	many	details	and	specific	information	as	you	can	and	want,	and	then	you	tell
libcurl	to	perform	that	transfer.

That	said,	networking	and	protocols	are	areas	with	lots	of	pitfalls	and	special	cases	so	the
more	you	know	about	these	things,	the	more	you	will	be	able	to	understand	about	libcurl's
options	and	ways	of	working.	Not	to	mention,	such	knowledge	is	invaluable	when	you	are
debugging	and	need	to	understand	what	to	do	next	when	things	don't	go	as	you	intended.

The	most	basic	libcurl	using	application	can	be	as	small	as	just	a	couple	of	lines	of	code,	but
most	applications	will,	of	course,	need	more	code	than	that.

Simple	by	default,	more	on	demand
libcurl	generally	does	the	simple	and	basic	transfer	by	default,	and	if	you	want	to	add	more
advanced	features,	you	add	that	by	setting	the	correct	options.	For	example,	libcurl	doesn't
support	HTTP	cookies	by	default	but	it	does	once	you	tell	it.

This	makes	libcurl's	behaviors	easier	to	guess	and	depend	on,	and	also	it	makes	it	easier	to
maintain	old	behavior	and	add	new	features.	Only	applications	that	actually	ask	for	and	use
the	new	features	will	get	that	behavior.

libcurl	basics

209

Easy	handle
The	fundamentals	you	need	to	learn	with	libcurl:

First	you	create	an	"easy	handle",	which	is	your	handle	to	a	transfer,	really:

CURL	*easy_handle	=	curl_easy_init();

Then	you	set	various	options	in	that	handle	to	control	the	upcoming	transfer.	Like,	this
example	sets	the	URL:

/*	set	URL	to	operate	on	*/

res	=	curl_easy_setopt(easy_handle,	CURLOPT_URL,	"http://example.com/");

Creating	the	easy	handle	and	setting	options	on	it	doesn't	make	any	transfer	happen,	and
usually	don't	even	make	much	more	happen	other	than	libcurl	storing	your	wish	to	be	used
later	when	the	transfer	actually	occurs.	Lots	of	syntax	checking	and	validation	of	the	input
may	also	be	postponed,	so	just	because		curl_easy_setopt		didn't	complain,	it	doesn't	mean
that	the	input	was	correct	and	valid;	you	may	get	an	error	returned	later.

Read	more	on	easy	options	in	its	separate	section.

All	options	are	"sticky".	They	remain	set	in	the	handle	until	you	change	them	again,	or	call
	curl_easy_reset()		on	the	handle.

When	you	are	done	setting	options	to	your	easy	handle,	you	can	fire	off	the	actual	transfer.

The	actual	"perform	the	transfer	phase"	can	be	done	using	different	means	and	function
calls,	depending	on	what	kind	of	behavior	you	want	in	your	application	and	how	libcurl	is
best	integrated	into	your	architecture.	Those	are	further	described	later	in	this	chapter.

After	the	transfer	has	completed,	you	can	figure	out	if	it	succeeded	or	not	and	you	can
extract	stats	and	various	information	that	libcurl	gathered	during	the	transfer	from	the	easy
handle.	See	Post	transfer	information.

While	the	transfer	is	ongoing,	libcurl	calls	your	specified	functions—known	as	callbacks—to
deliver	data,	to	read	data	or	to	do	a	wide	variety	of	things.

Reuse!

Easy	handle

210

Easy	handles	are	meant	and	designed	to	be	reused.	When	you	have	done	a	single	transfer
with	the	easy	handle,	you	can	immediately	use	it	again	for	your	next	transfer.	There	are	lots
of	gains	to	be	had	by	this.

Easy	handle

211

"Drive"	transfers

libcurl	provides	three	different	ways	to	perform	the	transfer.	Which	way	to	use	in	your	case	is
entirely	up	to	you	and	what	you	need.

1.	 The	'easy'	interface	lets	you	do	a	single	transfer	in	a	synchronous	fashion.	libcurl	will	do
the	entire	transfer	and	return	control	back	to	your	application	when	it	is	completed—
successful	or	failed.

2.	 The	'multi'	interface	is	for	when	you	want	to	do	more	than	one	transfer	at	the	same	time,
or	you	just	want	an	non-blocking	transfer	mechanism.

3.	 The	'multi_socket'	interface	is	a	slight	variation	of	the	regular	multi	one,	but	is	event-
based	and	is	really	the	suggested	API	to	use	if	you	intend	to	scale	up	the	number	of
simultaneous	transfers	to	hundreds	or	thousands	or	so.

Let's	look	at	each	one	a	little	closer…

Drive	transfers

212

Driving	with	the	easy	interface

The	name	'easy'	was	picked	simply	because	this	is	really	the	easy	way	to	use	libcurl,	and
with	easy,	of	course,	comes	a	few	limitations.	Like,	for	example,	that	it	can	only	do	one
transfer	at	a	time	and	that	it	does	the	entire	transfer	in	a	single	function	call	and	returns	once
it	is	completed:

res	=	curl_easy_perform(easy_handle);

If	the	server	is	slow,	if	the	transfer	is	large	or	if	you	have	some	unpleasant	timeouts	in	the
network	or	similar,	this	function	call	can	end	up	taking	a	very	long	time.	You	can,	of	course,
set	timeouts	to	not	allow	it	to	spend	more	than	N	seconds,	but	it	could	still	mean	a
substantial	amount	of	time	depending	on	the	particular	conditions.

If	you	want	your	application	to	do	something	else	while	libcurl	is	transferring	with	the	easy
interface,	you	need	to	use	multiple	threads.	If	you	want	to	do	multiple	simultaneous	transfers
when	using	the	easy	interface,	you	need	to	perform	each	of	the	transfers	in	its	own	thread.

Drive	with	easy

213

Driving	with	the	multi	interface

The	name	'multi'	is	for	multiple,	as	in	multiple	parallel	transfers,	all	done	in	the	same	single
thread.	The	multi	API	is	non-blocking	so	it	can	also	make	sense	to	use	it	for	single	transfers.

The	transfer	is	still	set	in	an	"easy"		CURL	*		handle	as	described	above,	but	with	the	multi
interface	you	also	need	a	multi		CURLM	*		handle	created	and	use	that	to	drive	all	the
individual	transfers.	The	multi	handle	can	"hold"	one	or	many	easy	handles:

CURLM	*multi_handle	=	curl_multi_init();

A	multi	handle	can	also	get	certain	options	set,	which	you	do	with		curl_multi_setopt()	,	but
in	the	simplest	case	you	might	not	have	anything	to	set	there.

To	drive	a	multi	interface	transfer,	you	first	need	to	add	all	the	individual	easy	handles	that
should	be	transferred	to	the	multi	handle.	You	can	add	them	to	the	multi	handle	at	any	point
and	you	can	remove	them	again	whenever	you	like.	Removing	an	easy	handle	from	a	multi
handle	will,	of	course,	remove	the	association	and	that	particular	transfer	would	stop
immediately.

Adding	an	easy	handle	to	the	multi	handle	is	very	easy:

curl_multi_add_handle(multi_handle,	easy_handle);

Removing	one	is	just	as	easily	done:

curl_multi_remove_handle(multi_handle,	easy_handle);

Having	added	the	easy	handles	representing	the	transfers	you	want	to	perform,	you	write
the	transfer	loop.	With	the	multi	interface,	you	do	the	looping	so	you	can	ask	libcurl	for	a	set
of	file	descriptors	and	a	timeout	value	and	do	the		select()		call	yourself,	or	you	can	use	the
slightly	simplified	version	which	does	that	for	us,	with		curl_multi_wait	.	The	simplest	loop
would	basically	be	this:	(note	that	a	real	application	would	check	return	codes)

int	transfers_running;

do	{

			curl_multi_wait	(multi_handle,	NULL,	0,	1000,	NULL);

			curl_multi_perform	(multi_handle,	&transfers_running);

}	while	(transfers_running);

Drive	with	multi

214

The	fourth	argument	to		curl_multi_wait	,	set	to	1000	in	the	example	above,	is	a	timeout	in
milliseconds.	It	is	the	longest	time	the	function	will	wait	for	any	activity	before	it	returns
anyway.	You	don't	want	to	lock	up	for	too	long	before	calling		curl_multi_perform		again	as
there	are	timeouts,	progress	callbacks	and	more	that	may	loose	precision	if	you	do	so.

To	instead	do	select()	on	our	own,	we	extract	the	file	descriptors	and	timeout	value	from
libcurl	like	this	(note	that	a	real	application	would	check	return	codes):

int	transfers_running;

do	{

		fd_set	fdread;

		fd_set	fdwrite;

		fd_set	fdexcep;

		int	maxfd	=	-1;

		long	timeout;

		/*	extract	timeout	value	*/

		curl_multi_timeout(multi_handle,	&timeout);

		if	(timeout	<	0)

				timeout	=	1000;

		/*	convert	to	struct	usable	by	select	*/

		timeout.tv_sec	=	timeout	/	1000;

		timeout.tv_usec	=	(timeout	%	1000)	*	1000;

		FD_ZERO(&fdread);

		FD_ZERO(&fdwrite);

		FD_ZERO(&fdexcep);

		/*	get	file	descriptors	from	the	transfers	*/

		mc	=	curl_multi_fdset(multi_handle,	&fdread,	&fdwrite,	&fdexcep,	&maxfd);

		if	(maxfd	==	-1)	{

				SHORT_SLEEP;

		}

		else

			select(maxfd+1,	&fdread,	&fdwrite,	&fdexcep,	&timeout);

		/*	timeout	or	readable/writable	sockets	*/

		curl_multi_perform(multi_handle,	&transfers_running);

}	while	(transfers_running);

Both	these	loops	let	you	use	one	or	more	file	descriptors	of	your	own	on	which	to	wait,	like	if
you	read	from	your	own	sockets	or	a	pipe	or	similar.

And	again,	you	can	add	and	remove	easy	handles	to	the	multi	handle	at	any	point	during	the
looping.	Removing	a	handle	mid-transfer	will,	of	course,	abort	that	transfer.

Drive	with	multi

215

When	is	a	single	transfer	done?
As	the	examples	above	show,	a	program	can	detect	when	an	individual	transfer	completes
by	seeing	that	the		transfers_running		variable	decreases.

It	can	also	call		curl_multi_info_read()	,	which	will	return	a	pointer	to	a	struct	(a	"message")
if	a	transfer	has	ended	and	you	can	then	find	out	the	result	of	that	transfer	using	that	struct.

When	you	do	multiple	parallel	transfers,	more	than	one	transfer	can	of	course	complete	in
the	same		curl_multi_perform		invoke	and	then	you	might	need	more	than	one	call	to
	curl_multi_info_read		to	get	info	about	each	completed	transfer.

Drive	with	multi

216

Driving	with	the	"multi_socket"	interface
multi_socket	is	the	extra	spicy	version	of	the	regular	multi	interface	and	is	designed	for
event-driven	applications.	Make	sure	you	read	the	Drive	with	multi	interface	section	first.

multi_socket	supports	multiple	parallel	transfers—all	done	in	the	same	single	thread—and
have	been	used	to	run	several	tens	of	thousands	of	transfers	in	a	single	application.	It	is
usually	the	API	that	makes	the	most	sense	if	you	do	a	large	number	(>100	or	so)	of	parallel
transfers.

Event-driven	in	this	case	means	that	your	application	uses	a	system	level	library	or	setup
that	"subscribes"	to	a	number	of	sockets	and	it	lets	your	application	know	when	one	of	those
sockets	are	readable	or	writable	and	it	tells	you	exactly	which	one.

This	setup	allows	clients	to	scale	up	the	number	of	simultaneous	transfers	much	higher	than
with	other	systems,	and	still	maintain	good	performance.	The	"regular"	APIs	otherwise	waste
far	too	much	time	scanning	through	lists	of	all	the	sockets.

Pick	one
There	are	numerous	event	based	systems	to	select	from	out	there,	and	libcurl	is	completely
agnostic	to	which	one	you	use.	libevent,	libev	are	libuv	three	popular	ones	but	you	can	also
go	directly	to	your	operating	system's	native	solutions	such	as	epoll,	kqueue,	/dev/poll,
pollset,	Event	Completion	or	I/O	Completion	Ports.

Many	easy	handles
Just	like	with	the	regular	multi	interface,	you	add	easy	handles	to	a	multi	handle	with
	curl_multi_add_handle()	.	One	easy	handle	for	each	transfer	you	want	to	perform.

You	can	add	them	at	any	time	while	the	transfers	are	running	and	you	can	also	similarly
remove	easy	handles	at	any	time	using	the		curl_multi_remove_handle		call.	Typically	though,
you	remove	a	handle	only	after	its	transfer	is	completed.

multi_socket	callbacks

Drive	with	multi_socket

217

As	explained	above,	this	event-based	mechanism	relies	on	the	application	to	know	which
sockets	are	used	by	libcurl	and	what	libcurl	waits	for	on	those	sockets:	if	it	waits	for	the
socket	to	become	readable,	writable	or	both!

It	also	needs	to	tell	libcurl	when	its	timeout	time	has	expired,	as	it	is	control	of	driving
everything	libcurl	can't	do	it	itself.	So	libcurl	must	tell	the	application	an	updated	timeout
value,	too.

socket_callback

libcurl	informs	the	application	about	socket	activity	to	wait	for	with	a	callback	called
CURLMOPT_SOCKETFUNCTION.	Your	application	needs	to	implement	such	a	function:

int	socket_callback(CURL	*easy,						/*	easy	handle	*/

																				curl_socket_t	s,	/*	socket	*/

																				int	what,								/*	what	to	wait	for	*/

																				void	*userp,					/*	private	callback	pointer	*/

																				void	*socketp)			/*	private	socket	pointer	*/

{

			/*	told	about	the	socket	's'	*/

}

/*	set	the	callback	in	the	multi	handle	*/

curl_multi_setopt(multi_handle,	CURLMOPT_SOCKETFUNCTION,	socket_callback);

Using	this,	libcurl	will	set	and	remove	sockets	your	application	should	monitor.	Your
application	tells	the	underlying	event-based	system	to	wait	for	the	sockets.	This	callback	will
be	called	multiple	times	if	there	are	multiple	sockets	to	wait	for,	and	it	will	be	called	again
when	the	status	changes	and	perhaps	you	should	switch	from	waiting	for	a	writable	socket
to	instead	wait	for	it	to	become	readable.

When	one	of	the	sockets	that	the	application	is	monitoring	on	libcurl's	behalf	registers	that	it
becomes	readable	or	writable,	as	requested,	you	tell	libcurl	about	it	by	calling
	curl_multi_socket_action()		and	passing	in	the	affected	socket	and	an	associated	bitmask
specifying	which	socket	activity	that	was	registered:

int	running_handles;

ret	=	curl_multi_socket_action(multi_handle,

																															sockfd,	/*	the	socket	with	activity	*/

																															ev_bitmask,	/*	the	specific	activity	*/

																															&running_handles);

timer_callback

Drive	with	multi_socket

218

https://curl.haxx.se/libcurl/c/CURLMOPT_SOCKETFUNCTION.html

The	application	is	in	control	and	will	wait	for	socket	activity.	But	even	without	socket	activity
there	will	be	things	libcurl	needs	to	do.	Timeout	things,	calling	the	progress	callback,	starting
over	a	retry	or	failing	a	transfer	that	takes	too	long,	etc.	To	make	that	work,	the	application
must	also	make	sure	to	handle	a	single-shot	timeout	that	libcurl	sets.

libcurl	sets	the	timeout	with	the	timer_callback	CURLMOPT_TIMERFUNCTION:

int	timer_callback(multi_handle,			/*	multi	handle	*/

																			timeout_ms,					/*	milliseconds	to	wait	*/

																			userp)										/*	private	callback	pointer	*/

{

		/*	new	value	to	wait	for	is...	*/

}

/*	set	the	callback	in	the	multi	handle	*/

curl_multi_setopt(multi_handle,	CURLMOPT_TIMERFUNCTION,	timer_callback);

There	is	only	one	timeout	for	the	application	to	handle	for	the	entire	multi	handle,	no	matter
how	many	individual	easy	handles	that	have	been	added	or	transfers	that	are	in	progress.
The	timer	callback	will	be	updated	with	the	current	nearest-in-time	period	to	wait.	If	libcurl
gets	called	before	the	timeout	expiry	time	because	of	socket	activity,	it	may	very	well	update
the	timeout	value	again	before	it	expires.

When	the	event	system	of	your	choice	eventually	tells	you	that	the	timer	has	expired,	you
need	to	tell	libcurl	about	it:

curl_multi_socket_action(multi,	CURL_SOCKET_TIMEOUT,	0,	&running);

…in	many	cases,	this	will	make	libcurl	call	the	timer_callback	again	and	set	a	new	timeout
for	the	next	expiry	period.

How	to	start	everything

When	you	have	added	one	or	more	easy	handles	to	the	multi	handle	and	set	the	socket	and
timer	callbacks	in	the	multi	handle,	you	are	ready	to	start	the	transfer.

To	kick	it	all	off,	you	tell	libcurl	it	timed	out	(because	all	easy	handles	start	out	with	a	very,
very	short	timeout)	which	will	make	libcurl	call	the	callbacks	to	set	things	up	and	from	then
on	you	can	can	just	let	your	event	system	drive:

Drive	with	multi_socket

219

https://curl.haxx.se/libcurl/c/CURLMOPT_TIMERFUNCTION.html

/*	all	easy	handles	and	callbacks	are	setup	*/

curl_multi_socket_action(multi,	CURL_SOCKET_TIMEOUT,	0,	&running);

/*	now	the	callbacks	should	have	been	called	and	we	have	sockets	to	wait	for

			and	possibly	a	timeout,	too.	Make	the	event	system	do	its	magic	*/

event_base_dispatch(event_base);	/*	libevent2	has	this	API	*/

/*	at	this	point	we	have	exited	the	event	loop	*/

When	is	it	done?

The	'running_handles'	counter	returned	by		curl_multi_socket_action		holds	the	number	of
current	transfers	not	completed.	When	that	number	reaches	zero,	we	know	there	are	no
transfers	going	on.

Each	time	the	'running_handles'	counter	changes,		curl_multi_info_read()		will	return	info
about	the	specific	transfers	that	completed.

Drive	with	multi_socket

220

Connection	reuse
libcurl	keeps	a	pool	of	old	connections	alive.	When	one	transfer	has	completed	it	will	keep	N
connections	alive	in	a	"connection	pool"	so	that	a	subsequent	transfer	that	happens	to	be
able	to	reuse	one	of	the	existing	connections	can	use	it	instead	of	creating	a	new	one.
Reusing	a	connection	instead	of	creating	a	new	one	offers	significant	benefits	in	speed	and
required	resources.

Easy	API	pool

When	you	are	using	the	easy	API,	or,	more	specifically,	curl_easy_perform(),	libcurl	will	keep
the	pool	associated	with	the	specific	easy	handle.	Then	reusing	the	same	easy	handle	will
ensure	it	can	reuse	its	connection.

Multi	API	pool

When	you	are	using	the	multi	API,	the	connection	pool	is	instead	kept	associated	with	the
multi	handle.	This	allows	you	to	cleanup	and	re-create	easy	handles	freely	without	risking
losing	the	connection	pool,	and	it	allows	the	connection	used	by	one	easy	handle	to	get
reused	by	a	separate	one	in	a	later	transfer.	Just	reuse	the	multi	handle!

Connection	reuse

221

Callbacks
Lots	of	operations	within	libcurl	are	controlled	with	the	use	of	callbacks.	A	callback	is	a
function	pointer	provided	to	libcurl	that	libcurl	then	calls	at	some	point	in	time	to	get	a
particular	job	done.

Each	callback	has	its	specific	documented	purpose	and	it	requires	that	you	write	it	with	the
exact	function	prototype	to	accept	the	correct	arguments	and	return	the	documented	return
code	and	return	value	so	that	libcurl	will	perform	the	way	you	want	it	to.

Each	callback	option	also	has	a	companion	option	that	sets	the	associated	"user	pointer".
This	user	pointer	is	a	pointer	that	libcurl	doesn't	touch	or	care	about,	but	just	passes	on	as
an	argument	to	the	callback.	This	allows	you	to,	for	example,	pass	in	pointers	to	local	data
all	the	way	through	to	your	callback	function.

Callbacks

222

Write	callback

The	write	callback	is	set	with		CURLOPT_WRITEFUNCTION	:

curl_easy_setopt(handle,	CURLOPT_WRITEFUNCTION,	write_callback);

The		write_callback		function	must	match	this	prototype:

size_t	write_callback(char	*ptr,	size_t	size,	size_t	nmemb,	void	*userdata);

This	callback	function	gets	called	by	libcurl	as	soon	as	there	is	data	received	that	needs	to
be	saved.	ptr	points	to	the	delivered	data,	and	the	size	of	that	data	is	size	multiplied	with
nmemb.

If	this	callback	isn't	set,	libcurl	instead	uses	'fwrite'	by	default.

The	write	callback	will	be	passed	as	much	data	as	possible	in	all	invokes,	but	it	must	not
make	any	assumptions.	It	may	be	one	byte,	it	may	be	thousands.	The	maximum	amount	of
body	data	that	will	be	passed	to	the	write	callback	is	defined	in	the	curl.h	header	file:
	CURL_MAX_WRITE_SIZE		(the	usual	default	is	16KB).	If		CURLOPT_HEADER		is	enabled	for	this
transfer,	which	makes	header	data	get	passed	to	the	write	callback,	you	can	get	up	to
	CURL_MAX_HTTP_HEADER		bytes	of	header	data	passed	into	it.	This	usually	means	100KB.

This	function	may	be	called	with	zero	bytes	data	if	the	transferred	file	is	empty.

The	data	passed	to	this	function	will	not	be	zero	terminated!	You	cannot,	for	example,	use
printf's	"%s"	operator	to	display	the	contents	nor	strcpy	to	copy	it.

This	callback	should	return	the	number	of	bytes	actually	taken	care	of.	If	that	number	differs
from	the	number	passed	to	your	callback	function,	it	will	signal	an	error	condition	to	the
library.	This	will	cause	the	transfer	to	get	aborted	and	the	libcurl	function	used	will	return
	CURLE_WRITE_ERROR	.

The	user	pointer	passed	in	to	the	callback	in	the	userdata	argument	is	set	with
	CURLOPT_WRITEDATA	:

curl_easy_setopt(handle,	CURLOPT_WRITEDATA,	custom_pointer);

Write	data

223

Read	callback

The	read	callback	is	set	with		CURLOPT_READFUNCTION	:

curl_easy_setopt(handle,	CURLOPT_READFUNCTION,	read_callback);

The		read_callback		function	must	match	this	prototype:

size_t	read_callback(char	*buffer,	size_t	size,	size_t	nitems,	void	*stream);

This	callback	function	gets	called	by	libcurl	when	it	wants	to	send	data	to	the	server.	This	is
a	transfer	that	you	have	set	up	to	upload	data	or	otherwise	send	it	off	to	the	server.	This
callback	will	be	called	over	and	over	until	all	data	has	been	delivered	or	the	transfer	failed.

The	stream	pointer	points	to	the	private	data	set	with		CURLOPT_READDATA	:

curl_easy_setopt(handle,	CURLOPT_READDATA,	custom_pointer);

If	this	callback	isn't	set,	libcurl	instead	uses	'fread'	by	default.

The	data	area	pointed	at	by	the	pointer	buffer	should	be	filled	up	with	at	most	size	multiplied
with	nitems	number	of	bytes	by	your	function.	The	callback	should	then	return	the	number
of	bytes	that	it	stored	in	that	memory	area,	or	0	if	we	have	reached	the	end	of	the	data.	The
callback	can	also	return	a	few	"magic"	return	codes	to	cause	libcurl	to	return	failure
immediately	or	to	pause	the	particular	transfer.	See	the	CURLOPT_READFUNCTION	man
page	for	details.

Read	data

224

https://curl.haxx.se/libcurl/c/CURLOPT_READFUNCTION.html

Progress	callback

The	progress	callback	is	what	gets	called	regularly	and	repeatedly	for	each	transfer	during
the	entire	lifetime	of	the	transfer.	The	old	callback	was	set	with		CURLOPT_PROGRESSFUNCTION	
but	the	modern	and	preferred	callback	is	set	with		CURLOPT_XFERINFOFUNCTION	:

curl_easy_setopt(handle,	CURLOPT_XFERINFOFUNCTION,	xfer_callback);

The		xfer_callback		function	must	match	this	prototype:

int	xfer_callback(void	*clientp,	curl_off_t	dltotal,	curl_off_t	dlnow,

																		curl_off_t	ultotal,	curl_off_t	ulnow);

If	this	option	is	set	and		CURLOPT_NOPROGRESS		is	set	to	0	(zero),	this	callback	function	gets
called	by	libcurl	with	a	frequent	interval.	While	data	is	being	transferred	it	will	be	called	very
frequently,	and	during	slow	periods	like	when	nothing	is	being	transferred	it	can	slow	down
to	about	one	call	per	second.

The	clientp	pointer	points	to	the	private	data	set	with		CURLOPT_XFERINFODATA	:

curl_easy_setopt(handle,	CURLOPT_XFERINFODATA,	custom_pointer);

The	callback	gets	told	how	much	data	libcurl	will	transfer	and	has	transferred,	in	number	of
bytes:

dltotal	is	the	total	number	of	bytes	libcurl	expects	to	download	in	this	transfer.
dlnow	is	the	number	of	bytes	downloaded	so	far.
ultotal	is	the	total	number	of	bytes	libcurl	expects	to	upload	in	this	transfer.
ulnow	is	the	number	of	bytes	uploaded	so	far.

Unknown/unused	argument	values	passed	to	the	callback	will	be	set	to	zero	(like	if	you	only
download	data,	the	upload	size	will	remain	0).	Many	times	the	callback	will	be	called	one	or
more	times	first,	before	it	knows	the	data	sizes,	so	a	program	must	be	made	to	handle	that.

Returning	a	non-zero	value	from	this	callback	will	cause	libcurl	to	abort	the	transfer	and
return		CURLE_ABORTED_BY_CALLBACK	.

If	you	transfer	data	with	the	multi	interface,	this	function	will	not	be	called	during	periods	of
idleness	unless	you	call	the	appropriate	libcurl	function	that	performs	transfers.

(The	deprecated	callback		CURLOPT_PROGRESSFUNCTION		worked	identically	but	instead	of	taking
arguments	of	type		curl_off_t	,	it	used		double	.)

Progress	information

225

Progress	information

226

Header	callback

The	header	callback	is	set	with		CURLOPT_HEADERFUNCTION	:

curl_easy_setopt(handle,	CURLOPT_HEADERFUNCTION,	header_callback);

The		header_callback		function	must	match	this	prototype:

size_t	header_callback(char	*ptr,	size_t	size,	size_t	nmemb,	void	*userdata);

This	callback	function	gets	called	by	libcurl	as	soon	as	a	header	has	been	received.	ptr
points	to	the	delivered	data,	and	the	size	of	that	data	is	size	multiplied	with	nmemb.	libcurl
buffers	headers	and	delivers	only	"full"	headers,	one	by	one,	to	this	callback.

The	data	passed	to	this	function	will	not	be	zero	terminated!	You	cannot,	for	example,	use
printf's	"%s"	operator	to	display	the	contents	nor	strcpy	to	copy	it.

This	callback	should	return	the	number	of	bytes	actually	taken	care	of.	If	that	number	differs
from	the	number	passed	to	your	callback	function,	it	signals	an	error	condition	to	the	library.
This	will	cause	the	transfer	to	abort	and	the	libcurl	function	used	will	return
	CURLE_WRITE_ERROR	.

The	user	pointer	passed	in	to	the	callback	in	the	userdata	argument	is	set	with
	CURLOPT_HEADERDATA	:

curl_easy_setopt(handle,	CURLOPT_HEADERDATA,	custom_pointer);

Header	data

227

Debug	callback

The	debug	callback	is	set	with		CURLOPT_DEBUGFUNCTION	:

curl_easy_setopt(handle,	CURLOPT_DEBUGFUNCTION,	debug_callback);

The		debug_callback		function	must	match	this	prototype:

int	debug_callback(CURL	*handle,

																			curl_infotype	type,

																			char	*data,

																			size_t	size,

																			void	*userdata);

This	callback	function	replaces	the	default	verbose	output	function	in	the	library	and	will	get
called	for	all	debug	and	trace	messages	to	aid	applications	to	understand	what's	going	on.
The	type	argument	explains	what	sort	of	data	that	is	provided:	header,	data	or	SSL	data	and
in	which	direction	it	flows.

A	common	use	for	this	callback	is	to	get	a	full	trace	of	all	data	that	libcurl	sends	and
receives.	The	data	sent	to	this	callback	is	always	the	unencrypted	version,	even	when,	for
example,	HTTPS	or	other	encrypted	protocols	are	used.

This	callback	must	return	zero	or	cause	the	transfer	to	stop	with	an	error	code.

The	user	pointer	passed	in	to	the	callback	in	the	userdata	argument	is	set	with
	CURLOPT_DEBUGDATA	:

curl_easy_setopt(handle,	CURLOPT_DEBUGDATA,	custom_pointer);

Debug

228

sockopt	callback

The	sockopt	callback	is	set	with		CURLOPT_SOCKOPTFUNCTION	:

curl_easy_setopt(handle,	CURLOPT_SOCKOPTFUNCTION,	sockopt_callback);

The		sockopt_callback		function	must	match	this	prototype:

int	sockopt_callback(void	*clientp,

																					curl_socket_t	curlfd,

																					curlsocktype	purpose);

This	callback	function	gets	called	by	libcurl	when	a	new	socket	has	been	created	but	before
the	connect	call,	to	allow	applications	to	change	specific	socket	options.

The	clientp	pointer	points	to	the	private	data	set	with		CURLOPT_SOCKOPTDATA	:

curl_easy_setopt(handle,	CURLOPT_SOCKOPTDATA,	custom_pointer);

This	callback	should	return:

CURL_SOCKOPT_OK	on	success
CURL_SOCKOPT_ERROR	to	signal	an	unrecoverable	error	to	libcurl
CURL_SOCKOPT_ALREADY_CONNECTED	to	signal	success	but	also	that	the	socket
is	in	fact	already	connected	to	the	destination

sockopt

229

SSL	context	callback

TBD

SSL	context

230

seek	and	ioctl	callbacks

TBD

Seek	and	ioctl

231

Convert	to	and	from	network	callbacks

TBD

Convert	from	UTF-8	callback

TBD

Network	data	conversion

232

Opensocket	and	closesocket	callbacks
Occasionally	you	end	up	in	a	situation	where	you	want	your	application	to	control	with	more
precision	exactly	what	socket	libcurl	will	use	for	its	operations.	libcurl	offers	this	pair	of
callbacks	that	replaces	libcurl's	own	call	to		socket()		and	the	subsequent		close()		of	the
same	file	descriptor.

Provide	a	file	descriptor
By	setting	the		CURLOPT_OPENSOCKETFUNCTION		callback,	you	can	provide	a	custom	function	to
return	a	file	descriptor	for	libcurl	to	use:

curl_easy_setopt(handle,	CURLOPT_OPENSOCKETFUNCTION,	opensocket_callback);

The		opensocket_callback		function	must	match	this	prototype:

curl_socket_t	opensocket_callback(void	*clientp,

																																		curlsocktype	purpose,

																																		struct	curl_sockaddr	*address);

The	callback	gets	the	clientp	as	first	argument,	which	is	simply	an	opaque	pointer	you	set
with		CURLOPT_OPENSOCKETDATA	.

The	other	two	arguments	pass	in	data	that	identifies	for	what	purpose	and	address	the
socket	is	to	be	used.	The	purpose	is	a	typedef	with	a	value	of		CURLSOCKTYPE_IPCXN		or
	CURLSOCKTYPE_ACCEPT	,	basically	idenfying	in	which	circumstance	the	socket	is	created.	The
"accept"	case	being	when	libcurl	is	used	to	accept	an	incoming	FTP	connection	for	when
FTP	active	mode	is	used,	and	all	other	cases	when	libcurl	creates	a	socket	for	its	own
outgoing	connections	the	IPCXN	value	is	passed	in.

The	address	pointer	points	to	a		struct	curl_sockaddr		that	describes	the	IP	address	of	the
network	destination	for	which	this	socket	is	created.	Your	callback	can	for	example	use	this
information	to	whitelist	or	blacklist	specific	addresses	or	address	ranges.

The	socketopen	callback	is	also	explicitly	allowed	to	modify	the	target	address	in	that	struct,
if	you	would	like	to	offer	some	sort	of	network	filter	or	translation	layer.

Opensocket	and	closesocket

233

The	callback	should	return	a	file	descriptor	or		CURL_SOCKET_BAD	,	which	then	will	cause	an
unrecoverable	error	within	libcurl	and	it	will	eventually	return		CURLE_COULDNT_CONNECT		from	its
perform	function.

If	you	want	to	return	a	file	descriptor	that	is	already	connected	to	a	server,	then	you	must
also	set	the	sockopt	callback	and	make	sure	that	returns	the	correct	return	value.

The		curl_sockaddress		struct	looks	like	this:

struct	curl_sockaddr	{

		int	family;

		int	socktype;

		int	protocol;

		unsigned	int	addrlen;

		struct	sockaddr	addr;

};

Socket	close	callback
The	corresponding	callback	to	the	open	socket	is	of	course	the	close	socket.	Usually	when
you	provide	a	custom	way	to	provide	a	file	descriptor	you	want	to	provide	your	own	cleanup
version	as	well:

curl_easy_setopt(handle,	CURLOPT_CLOSEOCKETFUNCTION,	closesocket_callback);

The		closesocket_callback		function	must	match	this	prototype:

int	closesocket_callback(void	*clientp,	curl_socket_t	item);

Opensocket	and	closesocket

234

SSH	key	callback

TBD

SSH	key

235

RTSP	interleave	callback

TBD

RTSP	interleaved	data

236

FTP	chunk	callbacks

TBD

FTP	matching	callback

TBD

FTP	matching

237

Cleanup
In	previous	sections	we	have	discussed	how	to	setup	handles	and	how	to	drive	the
transfers.	All	transfers	will,	of	course,	end	up	at	some	point,	either	successfully	or	with	a
failure.

Multi	API

When	you	have	finished	a	single	transfer	with	the	multi	API,	you	use
	curl_multi_info_read()		to	identify	exactly	which	easy	handle	was	completed	and	you
remove	that	easy	handle	from	the	multi	handle	with		curl_multi_remove_handle()	.

If	you	remove	the	last	easy	handle	from	the	multi	handle	so	there	are	no	more	transfers
going	on,	you	can	close	the	multi	handle	like	this:

curl_multi_cleanup(multi_handle);

easy	handle

When	the	easy	handle	is	done	serving	its	purpose,	you	can	close	it.	If	you	intend	to	do
another	transfer,	you	are	however	advised	to	rather	reuse	the	handle	rather	than	to	close	it
and	create	a	new	one.

If	you	don't	intend	to	do	another	transfer	with	the	easy	handle,	you	simply	ask	libcurl	to
cleanup:

curl_easy_cleanup(easy_handle);

Cleanup

238

Proxies
A	proxy	in	a	network	context	is	a	sort	of	middle	man,	a	server	in	between	you	as	a	client	and
the	remote	server	you	want	to	communicate	with.	The	client	contacts	the	middle	man	which
then	goes	on	to	contact	the	remote	server	for	you.

This	sort	of	proxy	use	is	sometimes	used	by	companies	and	organizations,	in	which	case
you	are	usually	required	to	use	them	to	reach	the	target	server.

There	are	several	different	kinds	of	proxies	and	different	protocols	to	use	when
communicating	with	a	proxy,	and	libcurl	supports	a	few	of	the	most	common	proxy	protocols.
It	is	important	to	realize	that	the	protocol	used	to	the	proxy	isn't	necessarily	the	same
protocol	used	to	the	remote	server.

When	setting	up	a	transfer	with	libcurl	you	need	to	point	out	the	server	name	and	port
number	of	the	proxy.	You	may	find	that	your	favorite	browsers	can	do	this	in	slightly	more
advanced	ways	than	libcurl	can,	and	we	will	get	into	such	details	in	later	sections.

Proxy	types
libcurl	supports	the	two	major	proxy	types:	SOCKS	and	HTTP	proxies.	More	specifically,	it
supports	both	SOCKS4	and	SOCKS5	with	or	without	remote	name	lookup,	as	well	as	both
HTTP	and	HTTPS	to	the	local	proxy.

The	easiest	way	to	specify	which	kind	of	proxy	you	are	talking	to	is	to	set	the	scheme	part	of
the	proxy	host	name	string	(CURLOPT_PROXY)	to	match	it:

socks4://proxy.example.com:12345/

socks4a://proxy.example.com:12345/

socks5://proxy.example.com:12345/

socks5h://proxy.example.com:12345/

http://proxy.example.com:12345/

https://proxy.example.com:12345/

	socks4		-	means	SOCKS4	with	local	name	resolving

	socks4a		-	means	SOCKS4	with	proxy's	name	resolving

	socks5		-	means	SOCKS5	with	local	name	resolving

	socks5h		-	means	SOCKS5	with	proxy's	name	resolving

Proxies

239

	http		-	means	HTTP,	which	always	lets	the	proxy	resolve	names

	https		-	means	HTTPS	to	the	proxy,	which	always	lets	the	proxy	resolve	names	(Note	that
HTTPS	proxy	support	was	added	recently,	in	curl	7.52.0,	and	it	still	only	works	with	a	subset
of	the	TLS	libraries:	OpenSSL,	GnuTLS	and	NSS.)

You	can	also	opt	to	set	the	type	of	the	proxy	with	a	separate	option	if	you	prefer	to	only	set
the	host	name,	using		CURLOPT_PROXYTYPE	.	Similarly,	you	can	set	the	proxy	port	number	to
use	with		CURLOPT_PROXYPORT	.

Local	or	proxy	name	lookup
In	a	section	above	you	can	see	that	different	proxy	setups	allow	the	name	resolving	to	be
done	by	different	parties	involved	in	the	transfer.	You	can	in	several	cases	either	have	the
client	resolve	the	server	host	name	and	pass	on	the	IP	address	to	the	proxy	to	connect	to	-
which	of	course	assumes	that	the	name	lookup	works	accurately	on	the	client	system	-	or
you	can	hand	over	the	name	to	the	proxy	to	have	the	proxy	resolve	the	name;	converting	it
to	an	IP	address	to	connect	to.

When	you	are	using	an	HTTP	or	HTTPS	proxy,	you	always	give	the	name	to	the	proxy	to
resolve.

Which	proxy?
TBD

Using	proxies	for	various	protocols
TBD

HTTP	proxy
TBD

HTTPS	proxy
TBD

Proxies

240

Proxy	authentication
TBD

Proxies

241

Post	transfer	info
Remember	how	libcurl	transfers	are	associated	with	an	"easy	handle"!	Each	transfer	has
such	a	handle	and	when	a	transfer	is	completed,	before	the	handle	is	cleaned	or	reused	for
another	transfer,	it	can	be	used	to	extract	information	from	the	previous	operation.

Your	friend	for	doing	this	is	called		curl_easy_getinfo()		and	you	tell	it	which	specific
information	you're	interested	in	and	it	will	return	that	to	you	if	it	can.

When	you	use	this	function,	you	pass	in	the	easy	handle,	which	information	you	want	and	a
pointer	to	a	variable	to	hold	the	answer.	You	must	pass	in	a	pointer	to	a	variable	of	the
correct	type	or	you	risk	that	things	will	go	side-ways.	These	information	values	are	designed
to	be	provided	after	the	transfer	is	completed.

The	data	you	receive	can	be	a	long,	a	'char	',	a	'struct	curl_slist	',	a	double	or	a	socket.

This	is	how	you	extract	the		Content-Type:		value	from	the	previous	HTTP	transfer:

CURLcode	res;

char	*content_type;

res	=	curl_easy_getinfo(curl,	CURLINFO_CONTENT_TYPE,	&content_type);

but	if	you	want	to	extract	the	local	port	number	that	was	used	in	that	connection:

CURLcode	res;

long	port_number;

res	=	curl_easy_getinfo(curl,	CURLINFO_LOCAL_PORT,	&port_number);

Available	information

Getinfo	option Type Description

CURLINFO_ACTIVESOCKET curl_socket_t The	session's	active	socket

CURLINFO_APPCONNECT_TIME double
Time	from	start	until
SSL/SSH	handshake
completed.

CURLINFO_CERTINFO struct
curl_slist	* Certificate	chain

CURLINFO_CONDITION_UNMET long Whether	or	not	a	time
conditional	was	met

Post	transfer	info

242

CURLINFO_CONNECT_TIME double Time	from	start	until	remote
host	or	proxy	completed

CURLINFO_CONTENT_LENGTH_DOWNLOAD double Content	length	from	the
Content-Length	header

CURLINFO_CONTENT_LENGTH_UPLOAD double Upload	size

CURLINFO_CONTENT_TYPE char	* Content	type	from	the
Content-Type	header

CURLINFO_COOKIELIST struct
curl_slist	* List	of	all	known	cookies

CURLINFO_EFFECTIVE_URL char	* Last	used	URL

CURLINFO_FILETIME long Remote	time	of	the	retrieved
document

CURLINFO_FTP_ENTRY_PATH char	* The	entry	path	after	logging
in	to	an	FTP	server

CURLINFO_HEADER_SIZE long Number	of	bytes	of	all
headers	received

CURLINFO_HTTPAUTH_AVAIL long
Available	HTTP
authentication	methods
(bitmask)

CURLINFO_HTTP_CONNECTCODE long Last	proxy	CONNECT
response	code

CURLINFO_HTTP_VERSION long The	http	version	used	in	the
connection

CURLINFO_LASTSOCKET long Last	socket	used

CURLINFO_LOCAL_IP char	* Local-end	IP	address	of	last
connection

CURLINFO_LOCAL_PORT long Local-end	port	of	last
connection

CURLINFO_NAMELOOKUP_TIME double Time	from	start	until	name
resolving	completed

CURLINFO_NUM_CONNECTS long
Number	of	new	successful
connections	used	for
previous	transfer

CURLINFO_OS_ERRNO long The	errno	from	the	last
failure	to	connect

CURLINFO_PRETRANSFER_TIME double Time	from	start	until	just
before	the	transfer	begins

CURLINFO_PRIMARY_IP char	* IP	address	of	the	last
connection

Post	transfer	info

243

CURLINFO_PRIMARY_PORT long Port	of	the	last	connection

CURLINFO_PRIVATE char	* User's	private	data	pointer

CURLINFO_PROTOCOL long The	protocol	used	for	the
connection

CURLINFO_PROXYAUTH_AVAIL long Available	HTTP	proxy
authentication	methods

CURLINFO_PROXY_SSL_VERIFYRESULT long Proxy	certificate	verification
result

CURLINFO_REDIRECT_COUNT long Total	number	of	redirects
that	were	followed

CURLINFO_REDIRECT_TIME double
Time	taken	for	all	redirect
steps	before	the	final
transfer

CURLINFO_REDIRECT_URL char	*
URL	a	redirect	would	take
you	to,	had	you	enabled
redirects

CURLINFO_REQUEST_SIZE long Number	of	bytes	sent	in	the
issued	HTTP	requests

CURLINFO_RESPONSE_CODE long Last	received	response
code

CURLINFO_RTSP_CLIENT_CSEQ long RTSP	CSeq	that	will	next	be
used

CURLINFO_RTSP_CSEQ_RECV long RTSP	CSeq	last	received

CURLINFO_RTSP_SERVER_CSEQ long RTSP	CSeq	that	will	next	be
expected

CURLINFO_RTSP_SESSION_ID char	* RTSP	session	ID

CURLINFO_SCHEME char	* The	scheme	used	for	the
connection

CURLINFO_SIZE_DOWNLOAD double Number	of	bytes
downloaded

CURLINFO_SIZE_UPLOAD double Number	of	bytes	uploaded

CURLINFO_SPEED_DOWNLOAD double Average	download	speed

CURLINFO_SPEED_UPLOAD double Average	upload	speed

CURLINFO_SSL_ENGINES struct
curl_slist	*

A	list	of	OpenSSL	crypto
engines

CURLINFO_SSL_VERIFYRESULT long Certificate	verification	result

CURLINFO_STARTTRANSFER_TIME double
Time	from	start	until	just
when	the	first	byte	is
received

Post	transfer	info

244

CURLINFO_TLS_SESSION struct
curl_slist	*

TLS	session	info	that	can	be
used	for	further	processing.
(Deprecated	option,	use
CURLINFO_TLS_SSL_PTR
instead!)

CURLINFO_TLS_SSL_PTR struct
curl_slist	*

TLS	session	info	that	can	be
used	for	further	processing

CURLINFO_TOTAL_TIME double Total	time	of	previous
transfer

Post	transfer	info

245

API	compatibility
libcurl	promises	API	stability	and	guarantees	that	your	program	written	today	will	remain
working	in	the	future.	We	don't	break	compatibility.

Over	time,	we	add	features,	new	options	and	new	functions	to	the	APIs	but	we	do	not
change	behavior	in	a	non-compatible	way	or	remove	functions.

The	last	time	we	changed	the	API	in	an	non-compatible	way	was	for	7.16.0	in	2006	and	we
plan	to	never	do	it	again.

Version	numbers

Curl	and	libcurl	are	individually	versioned,	but	they	mostly	follow	each	other	rather	closely.

The	version	numbering	is	always	built	up	using	the	same	system:

X.Y.Z

X	is	main	version	number
Y	is	release	number
Z	is	patch	number

Bumping	numbers

One	of	these	X.Y.Z	numbers	will	get	bumped	in	every	new	release.	The	numbers	to	the	right
of	a	bumped	number	will	be	reset	to	zero.

The	main	version	number	X	is	bumped	when	really	big,	world	colliding	changes	are	made.
The	release	number	Y	is	bumped	when	changes	are	performed	or	things/features	are
added.	The	patch	number	Z	is	bumped	when	the	changes	are	mere	bugfixes.

It	means	that	after	a	release	1.2.3,	we	can	release	2.0.0	if	something	really	big	has	been
made,	1.3.0	if	not	that	big	changes	were	made	or	1.2.4	if	mostly	bugs	were	fixed.

Bumping,	as	in	increasing	the	number	with	1,	is	unconditionally	only	affecting	one	of	the
numbers	(and	the	ones	to	the	right	of	it	are	set	to	zero).	1	becomes	2,	3	becomes	4,	9
becomes	10,	88	becomes	89	and	99	becomes	100.	So,	after	1.2.9	comes	1.2.10.	After
3.99.3,	3.100.0	might	come.

All	original	curl	source	release	archives	are	named	according	to	the	libcurl	version	(not
according	to	the	curl	client	version	that,	as	said	before,	might	differ).

API	compatibility

246

Which	libcurl	version

As	a	service	to	any	application	that	might	want	to	support	new	libcurl	features	while	still
being	able	to	build	with	older	versions,	all	releases	have	the	libcurl	version	stored	in	the
	curl/curlver.h		file	using	a	static	numbering	scheme	that	can	be	used	for	comparison.	The
version	number	is	defined	as:

#define	LIBCURL_VERSION_NUM	0xXXYYZZ

Where	XX,	YY	and	ZZ	are	the	main	version,	release	and	patch	numbers	in	hexadecimal.	All
three	number	fields	are	always	represented	using	two	digits	(eight	bits	each).	1.2.0	would
appear	as	"0x010200"	while	version	9.11.7	appears	as	"0x090b07".

This	6-digit	hexadecimal	number	is	always	a	greater	number	in	a	more	recent	release.	It
makes	comparisons	with	greater	than	and	less	than	work.

This	number	is	also	available	as	three	separate	defines:		LIBCURL_VERSION_MAJOR	,
	LIBCURL_VERSION_MINOR		and		LIBCURL_VERSION_PATCH	.

These	defines	are,	of	course,	only	suitable	to	figure	out	the	version	number	built	just	now
and	they	won't	help	you	figuring	out	which	libcurl	version	that	is	used	at	run-time	three	years
from	now.

Which	libcurl	version	runs

To	figure	out	which	libcurl	version	that	your	application	is	using	right	now,
	curl_version_info()		is	there	for	you.

Applications	should	use	this	function	to	judge	if	things	are	possible	to	do	or	not,	instead	of
using	compile-time	checks,	as	dynamic/DLL	libraries	can	be	changed	independent	of
applications.

curl_version_info()	returns	a	pointer	to	a	struct	with	information	about	version	numbers	and
various	features	and	in	the	running	version	of	libcurl.	You	call	it	by	giving	it	a	special	age
counter	so	that	libcurl	knows	the	"age"	of	the	libcurl	that	calls	it.	The	age	is	a	define	called
	CURLVERSION_NOW		and	is	a	counter	that	is	increased	at	irregular	intervals	throughout	the	curl
development.	The	age	number	tells	libcurl	what	struct	set	it	can	return.

You	call	the	function	like	this:

curl_version_info_data	*ver	=	curl_version_info(CURLVERSION_NOW);

The	data	will	then	be	pointing	at	struct	that	has	or	at	least	can	have	the	following	layout:

API	compatibility

247

struct	{

		CURLversion	age;										/*	see	description	below	*/

		/*	when	'age'	is	0	or	higher,	the	members	below	also	exist:	*/

		const	char	*version;						/*	human	readable	string	*/

		unsigned	int	version_num;	/*	numeric	representation	*/

		const	char	*host;									/*	human	readable	string	*/

		int	features;													/*	bitmask,	see	below	*/

		char	*ssl_version;								/*	human	readable	string	*/

		long	ssl_version_num;					/*	not	used,	always	zero	*/

		const	char	*libz_version;	/*	human	readable	string	*/

		const	char	*	const	*protocols;	/*	protocols	*/

		/*	when	'age'	is	1	or	higher,	the	members	below	also	exist:	*/

		const	char	*ares;									/*	human	readable	string	*/

		int	ares_num;													/*	number	*/

		/*	when	'age'	is	2	or	higher,	the	member	below	also	exists:	*/

		const	char	*libidn;							/*	human	readable	string	*/

		/*	when	'age'	is	3	or	higher	(7.16.1	or	later),	the	members	below	also

					exist		*/

		int	iconv_ver_num;							/*	'_libiconv_version'	if	iconv	support	enabled	*/

		const	char	*libssh_version;	/*	human	readable	string	*/

}	curl_version_info_data;

API	compatibility

248

curl	--libcurl
We	actively	encourage	users	to	first	try	out	the	transfer	they	want	to	do	with	the	curl
command-line	tool,	and	once	it	works	roughly	the	way	you	want	it	to,	you	append	the		--
libcurl	[filename]		option	to	the	command	line	and	run	it	again.

The		--libcurl		command-line	option	will	create	a	C	program	in	the	provided	file	name.	That
C	program	is	an	application	that	uses	libcurl	to	run	the	transfer	you	just	had	the	curl
command-line	tool	do.	There	are	some	exceptions	and	it	isn't	always	a	100%	match,	but	you
will	find	that	it	can	serve	as	an	excellent	inspiration	source	for	what	libcurl	options	you	want
or	can	use	and	what	additional	arguments	to	provide	to	them.

If	you	specify	the	filename	as	a	single	dash,	as	in		--libcurl	-		you	will	get	the	program
written	to	stdout	instead	of	a	file.

As	an	example,	we	run	a	command	to	just	get	http://example.com:

curl	http://example.com	--libcurl	example.c

This	creates		example.c		in	the	current	directory,	looking	similar	to	this:

--libcurl

249

http://example.com

/*********	Sample	code	generated	by	the	curl	command-line	tool	**********

	*	All	curl_easy_setopt()	options	are	documented	at:

	*	https://curl.haxx.se/libcurl/c/curl_easy_setopt.html

	**/

#include	<curl/curl.h>

int	main(int	argc,	char	*argv[])

{

		CURLcode	ret;

		CURL	*hnd;

		hnd	=	curl_easy_init();

		curl_easy_setopt(hnd,	CURLOPT_URL,	"http://example.com");

		curl_easy_setopt(hnd,	CURLOPT_NOPROGRESS,	1L);

		curl_easy_setopt(hnd,	CURLOPT_USERAGENT,	"curl/7.45.0");

		curl_easy_setopt(hnd,	CURLOPT_MAXREDIRS,	50L);

		curl_easy_setopt(hnd,	CURLOPT_SSH_KNOWNHOSTS,	"/home/daniel/.ssh/known_hosts");

		curl_easy_setopt(hnd,	CURLOPT_TCP_KEEPALIVE,	1L);

		/*	Here	is	a	list	of	options	the	curl	code	used	that	cannot	get	generated

					as	source	easily.	You	may	select	to	either	not	use	them	or	implement

					them	yourself.

		CURLOPT_WRITEDATA	set	to	a	objectpointer

		CURLOPT_WRITEFUNCTION	set	to	a	functionpointer

		CURLOPT_READDATA	set	to	a	objectpointer

		CURLOPT_READFUNCTION	set	to	a	functionpointer

		CURLOPT_SEEKDATA	set	to	a	objectpointer

		CURLOPT_SEEKFUNCTION	set	to	a	functionpointer

		CURLOPT_ERRORBUFFER	set	to	a	objectpointer

		CURLOPT_STDERR	set	to	a	objectpointer

		CURLOPT_HEADERFUNCTION	set	to	a	functionpointer

		CURLOPT_HEADERDATA	set	to	a	objectpointer

		*/

		ret	=	curl_easy_perform(hnd);

		curl_easy_cleanup(hnd);

		hnd	=	NULL;

		return	(int)ret;

}

/****	End	of	sample	code	****/

--libcurl

250

Header	files
There	is	only	ever	one	header	your	libcurl	using	application	needs	to	include:

#include	<curl/curl.h>

That	file	in	turn	includes	a	few	other	public	header	files	but	you	can	basically	pretend	they
don't	exist.	(Historically	speaking,	we	started	out	slightly	different	but	over	time	we	have
stabilized	around	this	form	of	only	using	a	single	one	for	includes.)

Header	files

251

Global	initialization
Before	you	do	anything	libcurl	related	in	your	program,	you	should	do	a	global	libcurl
initialize	call	with		curl_global_init()	.	This	is	necessary	because	some	underlying	libraries
that	libcurl	might	be	using	need	a	call	ahead	to	get	setup	and	initialized	properly.

curl_global_init()	is,	unfortunately,	not	thread	safe,	so	you	must	ensure	that	you	only	do	it
once	and	never	simultaneously	with	another	call.	It	initializes	global	state	so	you	should	only
call	it	once,	and	once	your	program	is	completely	done	using	libcurl	you	can	call
	curl_global_cleanup()		to	free	and	clean	up	the	associated	global	resources	the	init	call
allocated.

libcurl	is	built	to	handle	the	situation	where	you	skip	the		curl_global_init()		call,	but	it	does
so	by	calling	it	itself	instead	(if	you	didn't	do	it	before	any	actual	file	transfer	starts)	and	it
then	uses	its	own	defaults.	But	beware	that	it	is	still	not	thread	safe	even	then,	so	it	might
cause	some	"interesting"	side	effects	for	you.	It	is	much	better	to	call	curl_global_init()
yourself	in	a	controlled	manner.

Global	initialization

252

libcurl	multi-threading
TBD

multi-threading

253

Set	handle	options
You	set	options	in	the	easy	handle	to	control	how	that	transfer	is	going	to	be	done,	or	in
some	cases	you	can	actually	set	options	and	modify	the	transfer's	behavior	while	it	is	in
progress.	You	set	options	with		curl_easy_setopt()		and	you	provide	the	handle,	the	option
you	want	to	set	and	the	argument	to	the	option.	All	options	take	exactly	one	argument	and
you	must	always	pass	exactly	three	parameters	to	the	curl_easy_setopt()	calls.

Since	the	curl_easy_setopt()	call	accepts	several	hundred	different	options	and	the	various
options	accept	a	variety	of	different	types	of	arguments,	it	is	very	important	to	read	up	on	the
specifics	and	provide	exactly	the	argument	type	the	specific	option	supports	and	expects.
Passing	in	the	wrong	type	can	lead	to	unexpected	side-effects	or	hard	to	understand
hiccups.

The	perhaps	most	important	option	that	every	transfer	needs,	is	the	URL.	libcurl	cannot
perform	a	transfer	without	knowing	which	URL	it	concerns	so	you	must	tell	it.	The	URL
option	name	is		CURLOPT_URL		as	all	options	are	prefixed	with		CURLOPT_		and	then	the
descriptive	name—all	using	uppercase	letters.	An	example	line	setting	the	URL	to	get	the
"http://example.com"	HTTP	contents	could	look	like:

CURLcode	ret	=	curl_easy_setopt(easy,	CURLOPT_URL,	"http://example.com");

Again:	this	only	sets	the	option	in	the	handle.	It	will	not	do	the	actual	transfer	or	anything.	It
will	basically	just	tell	libcurl	to	copy	the	string	and	if	that	works	it	returns	OK.

It	is,	of	course,	good	form	to	check	the	return	code	to	see	that	nothing	went	wrong.

Setting	numerical	options

Since	curl_easy_setopt()	is	a	vararg	function	where	the	3rd	argument	can	use	different	types
depending	on	the	situation,	normal	C	language	type	conversion	cannot	be	done.	So	you
must	make	sure	that	you	truly	pass	a	'long'	and	not	an	'int'	if	the	documentation	tells	you	so.
On	architectures	where	they	are	the	same	size,	you	may	not	get	any	problems	but	not	all
work	like	that.	Similarly,	for	options	that	accept	a	'curl_off_t'	type,	it	is	crucial	that	you	pass
in	an	argument	using	that	type	and	no	other.

Enforce	a	long:

curl_easy_setopt(handle,	CURLOPT_TIMEOUT,	5L);	/*	5	seconds	timeout	*/

curl	easy	options

254

http://example.com

Enforce	a	curl_off_t:

curl_off_t	no_larger_than	=	0x50000;

curl_easy_setopt(handle,	CURLOPT_MAXFILE_LARGE,	no_larger_than);

Get	handle	options

No,	there's	no	general	method	to	extract	the	same	information	you	previously	set	with
	curl_easy_setopt()	!	If	you	need	to	be	able	to	extract	the	information	again	that	you	set
earlier,	then	we	encourage	you	to	keep	track	of	that	data	yourself	in	your	application.

curl	easy	options

255

CURLcode	return	code
Many	libcurl	functions	return	a	CURLcode.	That's	a	special	libcurl	typedefed	variable	for
error	codes.	It	returns		CURLE_OK		(which	has	the	value	zero)	if	everything	is	fine	and	dandy
and	it	returns	a	non-zero	number	if	a	problem	was	detected.	There	are	almost	one	hundred
	CURLcode		errors	in	use,	and	you	can	find	them	all	in	the		curl/curl.h		header	file	and
documented	in	the	libcurl-errors	man	page.

You	can	convert	a	CURLcode	into	a	human	readable	string	with	the		curl_easy_strerror()	
function—but	be	aware	that	these	errors	are	rarely	phrased	in	a	way	that	is	suitable	for
anyone	to	expose	in	a	UI	or	to	an	end	user:

const	char	*str	=	curl_easy_strerror(error);

printf("libcurl	said	%s\n",	str);

Another	way	to	get	a	slightly	better	error	text	in	case	of	errors	is	to	set	the
	CURLOPT_ERRORBUFFER		option	to	point	out	a	buffer	in	your	program	and	then	libcurl	will	store	a
related	error	message	there	before	it	returns	an	error:

curl	error[CURL_ERROR_SIZE];	/*	needs	to	be	at	least	this	big	*/

CURLcode	ret	=	curl_easy_setopt(handle,	CURLOPT_ERRORBUFFER,	error);

CURLcode	return	codes

256

Verbose	operations
Okay,	we	just	showed	how	to	get	the	error	as	a	human	readable	text	as	that	is	an	excellent
help	to	figure	out	what	went	wrong	in	a	particular	transfer	and	often	explains	why	it	can	be
done	like	that	or	what	the	problem	is	for	the	moment.

The	next	lifesaver	when	writing	libcurl	applications	that	everyone	needs	to	know	about	and
needs	to	use	extensively,	at	least	while	developing	libcurl	applications	or	debugging	libcurl
itself,	is	to	enable	"verbose	mode"	with		CURLOPT_VERBOSE	:

CURLcode	ret	=	curl_easy_setopt(handle,	CURLOPT_VERBOSE,	1L);

When	libcurl	is	told	to	be	verbose	it	will	mention	transfer-related	details	and	information	to
stderr	while	the	transfer	is	ongoing.	This	is	awesome	to	figure	out	why	things	fail	and	to	learn
exactly	what	libcurl	does	when	you	ask	it	different	things.	You	can	redirect	the	output
elsewhere	by	changing	stderr	with		CURLOPT_STDERR		or	you	can	get	even	more	info	in	a
fancier	way	with	the	debug	callback	(explained	further	in	a	later	section).

Trace	everything

Verbose	is	certainly	fine,	but	sometimes	you	need	more.	libcurl	also	offers	a	trace	callback
that	in	addition	to	showing	you	all	the	stuff	the	verbose	mode	does,	it	also	passes	on	all	data
sent	and	received	so	that	your	application	gets	a	full	trace	of	everything.

The	sent	and	received	data	passed	to	the	trace	callback	is	given	to	the	callback	in	its
unencrypted	form,	which	can	be	very	handy	when	working	with	TLS	or	SSH	based	protocols
when	capturing	the	data	off	the	network	for	debugging	isn't	very	practical.

When	you	set	the		CURLOPT_DEBUGFUNCTION		option,	you	still	need	to	have		CURLOPT_VERBOSE	
enabled	but	with	the	trace	callback	set	libcurl	will	use	that	callback	instead	of	its	internal
handling.

The	trace	callback	should	match	a	prototype	like	this:

int	my_trace(CURL	*handle,	curl_infotype	type,	char	*ptr,	size_t	size,

													void	*userp);

handle	is	the	easy	handle	it	concerns,	type	describes	the	particular	data	passed	to	the
callback	(data	in/out,	header	in/out,	TLS	data	in/out	and	"text"),	ptr	points	to	the	data	being
size	number	of	bytes.	userp	is	the	custom	pointer	you	set	with		CURLOPT_DEBUGDATA	.

Verbose	operations

257

The	data	pointed	to	by	ptr	will	not	be	zero	terminated,	but	will	be	exactly	of	the	size	as	told
by	the	size	argument.

The	callback	must	return	0	or	libcurl	will	consider	it	an	error	and	abort	the	transfer.

On	the	curl	web	site,	we	host	an	example	called	debug.c	that	includes	a	simple	trace
function	to	get	inspiration	from.

There	are	also	additional	details	in	the	CURLOPT_DEBUGFUNCTION	man	page.

Verbose	operations

258

https://curl.haxx.se/libcurl/c/debug.html
https://curl.haxx.se/libcurl/c/CURLOPT_DEBUGFUNCTION.html

libcurl	examples
The	native	API	for	libcurl	is	in	C	so	this	chapter	is	focussed	on	examples	written	in	C.	But
since	many	language	bindings	for	libcurl	are	thin,	they	usually	expose	more	or	less	the	same
functions	and	thus	they	can	still	be	interesting	and	educational	for	users	of	other	languages,
too.

Get	a	simple	HTML	page
TBD

Submit	a	login	form	over	HTTP
TBD

Get	an	FTP	directory	listing
TBD

Download	an	HTTPS	page	straight	into
memory
TBD

Upload	data	to	an	HTTP	site	without	blocking
TBD

libcurl	examples

259

HTTP	with	libcurl
HTTP	is	by	far	the	most	commonly	used	protocol	by	libcurl	users	and	libcurl	offers	countless
ways	of	modifying	such	transfers.	See	the	HTTP	protocol	basics	for	some	basics	on	how	the
HTTP	protocol	works.

HTTPS
TBD

HTTP	proxy
TBD

HTTP	with	libcurl

260

HTTP	responses
Every	HTTP	request	includes	a	HTTP	response.	A	HTTP	response	is	a	set	of	metadata	and
a	response	body,	where	the	body	can	occasionally	be	zero	bytes	and	thus	nonexistent.	A
HTTP	response	will	however	always	have	response	headers.

The	response	body	will	be	passed	to	the	write	callback	and	the	response	headers	to	the
header	callback,	but	sometimes	an	application	just	want	to	know	the	size	of	the	data.

The	size	of	a	response	as	told	by	the	server	headers	can	be	extracted	with
	curl_easy_getinfo()		like	this:

double	size;

curl_easy_getinfo(curl,	CURLINFO_CONTENT_LENGTH_DOWNLOAD,	&size);

but	if	you	can	wait	until	after	the	transfer	is	already	done,	which	also	is	a	more	reliable	way
since	not	all	URLs	will	provide	the	size	up	front	(like	for	example	for	servers	that	generate
content	on	demand)	you	can	instead	ask	for	the	amount	of	downloaded	data	in	the	most
recent	transfer.

double	size;

curl_easy_getinfo(curl,	CURLINFO_SIZE_DOWNLOAD,	&size);

HTTP	response	code
Every	HTTP	response	starts	off	with	a	single	line	that	contains	the	HTTP	response	code.	It
is	a	three	digit	number	that	contains	the	server's	idea	of	the	status	for	the	request.	The
numbers	are	detailed	in	the	HTTP	standard	specifications	but	they	are	divided	into	ranges
that	basically	work	like	this:

Code Meaning

1xx Transient	code,	a	new	one	follows

2xx Things	are	OK

3xx The	content	is	somewhere	else

4xx Failed	because	of	a	client	problem

5xx Failed	because	of	a	server	problem

You	can	extract	the	response	code	after	a	transfer	like	this

HTTP	responses

261

long	code;

curl_easy_getinfo(curl,	CURLINFO_RESPONSE_CODE,	&code);

About	HTTP	response	code	"errors"
While	the	response	code	numbers	can	include	numbers	(in	the	4xx	and	5xx	ranges)	which
the	server	uses	to	signal	that	there	was	an	error	processing	the	request,	it	is	important	to
realize	that	this	will	not	cause	libcurl	to	return	an	error.

When	libcurl	is	asked	to	perform	a	HTTP	transfer	it	will	return	an	error	if	that	HTTP	transfer
fails.	However,	getting	a	HTTP	404	or	the	like	back	is	not	a	problem	for	libcurl.	It	is	not	a
HTTP	transfer	error.	A	user	might	very	well	be	writing	a	client	for	testing	a	server's	HTTP
responses.

If	you	insist	on	curl	treating	HTTP	response	codes	from	400	and	up	as	errors,	libcurl	offers
the		CURLOPT_FAILONERROR		option	that	if	set	instructs	curl	to	return		CURLE_HTTP_RETURNED_ERROR	
in	this	case.	It	will	then	return	error	as	soon	as	possible	and	not	deliver	the	response	body.

HTTP	responses

262

HTTP	Requests
A	HTTP	request	is	what	curl	sends	to	the	server	when	it	tells	the	server	what	to	do.	When	it
wants	to	get	data	or	send	data.	All	transfers	involving	HTTP	starts	with	a	HTTP	request.

A	HTTP	request	contains	a	method,	a	path,	HTTP	version	and	a	set	of	request	headers.	And
of	course	a	libcurl	using	application	can	tweak	all	those	fields.

Request	method
Every	HTTP	request	contains	a	"method",	sometimes	referred	to	as	a	"verb".	It	is	usually
something	like	GET,	HEAD,	POST	or	PUT	but	there	are	also	more	esoteric	ones	like
DELETE,	PATCH	and	OPTIONS.

Usually	when	you	use	libcurl	to	set	up	and	perform	a	transfer	the	specific	request	method	is
implied	by	the	options	you	use.	If	you	just	ask	for	a	URL,	it	means	the	method	will	be		GET	
while	if	you	set	for	example		CURLOPT_POSTFIELDS		that	will	make	libcurl	use	the		POST	
method.	If	you	set		CURLOPT_UPLOAD		to	true,	libcurl	will	send	a		PUT		method	in	its	HTTP
request	and	so	on.	Asking	for		CURLOPT_NOBODY		will	make	libcurl	use		HEAD	.

However,	sometimes	those	default	HTTP	methods	are	not	good	enough	or	simply	not	the
ones	you	want	your	transfer	to	use.	Then	you	can	instruct	libcurl	to	use	the	specific	method
you	like	with		CURLOPT_CUSTOMREQUEST	.	For	example,	you	want	to	send	a		DELETE		method	to
the	URL	of	your	choice:

curl_easy_setupt(curl,	CURLOPT_CUSTOMREQUEST,	"DELETE");

curl_easy_setupt(curl,	CURLOPT_URL,	"https://example.com/file.txt");

The	CURLOPT_CUSTOMREQUEST	setting	should	only	be	the	single	keyword	to	use	as
method	in	the	HTTP	request	line.	If	you	want	to	change	or	add	additional	HTTP	reuqest
headers,	see	the	following	section.

Customize	HTTP	request	headers
When	libcurl	issues	HTTP	requests	as	part	of	performing	the	data	transfers	you've	asked	it
to,	it	will	of	course	send	them	off	with	a	set	of	HTTP	headers	that	are	suitable	for	fulfilling	the
task	given	to	it.

HTTP	requests

263

If	just	given	the	URL	"http://localhost/file1.txt",	libcurl	7.51.0	would	send	the	following	request
to	the	server:

GET	/file1.txt	HTTP/1.1

Host:	localhost

Accept:	*/*

If	you	would	instead	instruct	your	application	to	also	set		CURLOPT_POSTFIELDS		to	the	string
"foobar"	(6	letters,	the	quotes	only	used	for	visual	delimiters	here),	it	would	send	the
following	headers:

POST	/file1.txt	HTTP/1.1

Host:	localhost

Accept:	*/*

Content-Length:	6

Content-Type:	application/x-www-form-urlencoded

If	you're	not	pleased	with	the	default	set	of	headers	libcurl	sends,	the	application	has	the
power	to	add,	change	or	remove	headers	in	the	HTTP	request.

Add	a	header

To	add	a	header	that	wouldn't	otherwise	be	in	the	request,	add	it	with		CURLOPT_HTTPHEADER	.
Suppose	you	want	a	header	called		Name:		that	contains		Mr.	Smith	:

struct	curl_slist	*list	=	NULL;

list	=	curl_slist_append(list,	"Name:	Mr	Smith");

curl_easy_setopt(curl,	CURLOPT_HTTPHEADER,	list);

curl_easy_perform(curl);

curl_slist_free_all(list);	/*	free	the	list	again	*/

Change	a	header

If	one	of	those	default	headers	aren't	to	your	satisfaction	you	can	alter	them.	Like	if	you	think
the	default		Host:		header	is	wrong	(even	though	it	is	derived	from	the	URL	you	give	libcurl),
you	can	tell	libcurl	your	own:

struct	curl_slist	*list	=	NULL;

list	=	curl_slist_append(list,	"Host:	Alternative");

curl_easy_setopt(curl,	CURLOPT_HTTPHEADER,	list);

curl_easy_perform(curl);

curl_slist_free_all(list);	/*	free	the	list	again	*/

HTTP	requests

264

http://localhost/file1.txt

Remove	a	header

As	you	may	then	have	noticed	in	the	above	sections,	if	you	try	to	add	a	header	with	no
contents	on	the	right	side	of	the	colon,	it	will	be	treated	as	a	removal	instruction	and	it	will
instead	completely	inhibit	that	header	from	being	sent.	If	you	instead	truly	want	to	send	a
header	with	zero	contents	on	the	right	side,	you	need	to	use	a	special	marker.	You	must
provide	the	header	with	a	semicolon	instead	of	a	proper	colon.	Like		Header;	.	So	if	you	want
to	add	a	header	to	the	outgoing	HTTP	request	that	is	just		Moo:		with	nothing	following	the
colon,	you	could	write	it	like:

struct	curl_slist	*list	=	NULL;

list	=	curl_slist_append(list,	"Moo;");

curl_easy_setopt(curl,	CURLOPT_HTTPHEADER,	list);

curl_easy_perform(curl);

curl_slist_free_all(list);	/*	free	the	list	again	*/

Provide	a	header	without	contents

When	you	think	libcurl	has	added	and	uses	a	header	you	really	think	it	shouldn't,	you	can
easily	tell	it	to	just	remove	it	from	requests.	Like	if	you	want	to	take	away	the		Accept:	
header.	Just	provide	the	header	name	with	nothing	to	the	right	sight	of	the	colon:

struct	curl_slist	*list	=	NULL;

list	=	curl_slist_append(list,	"Accept:");

curl_easy_setopt(curl,	CURLOPT_HTTPHEADER,	list);

curl_easy_perform(curl);

curl_slist_free_all(list);	/*	free	the	list	again	*/

Referrer
and	autoreferrer

TBD

HTTP	requests

265

HTTP	versions
As	any	other	Internet	protocol,	the	HTTP	protocol	has	kept	evolving	over	the	years	and	now
there	are	clients	and	servers	distributed	over	the	world	and	over	time	that	speak	different
versions	with	varying	levels	of	success.	So	in	order	to	get	libcurl	to	work	with	the	URLs	you
pass	in	libcurl	offers	ways	for	you	to	specify	which	HTTP	version	that	request	and	transfer
should	use.	libcurl	is	designed	in	a	way	so	that	it	tries	to	use	the	most	common,	the	most
sensible	if	you	want,	default	values	first	but	sometimes	that	isn't	enough	and	then	you	may
need	to	instruct	libcurl	what	to	do.

Since	perhaps	mid	2016,	libcurl	will	default	to	use	HTTP/1.1	for	HTTP	servers.	If	you
connect	to	HTTPS	and	you	have	a	libcurl	that	has	HTTP/2	abilities	built-in,	libcurl	will
attempt	to	use	HTTP/2	automatically	or	fall	down	to	1.1	in	case	the	negotiation	failed.	Non-
HTTP/2	capable	libcurls	get	1.1	over	HTTPS	by	default.

If	the	default	isn't	good	enough	for	your	transfer,	the		CURLOPT_HTTP_VERSION		option	is	there
for	you.

Option Description

CURL_HTTP_VERSION_NONE fill	in

CURL_HTTP_VERSION_1_0 fill	in

CURL_HTTP_VERSION_1_1 fill	in

CURL_HTTP_VERSION_2_0 fill	in

CURL_HTTP_VERSION_2TLS fill	in

CURL_HTTP_VERSION_2_PRIOR_KNOWLEDGE fill	in

HTTP	versions

266

HTTP	ranges
What	if	the	client	only	wants	the	first	200	bytes	out	of	a	remote	resource	or	perhaps	300
bytes	somewhere	in	the	middle?	The	HTTP	protocol	allows	a	client	to	ask	for	only	a	specific
data	range.	The	client	asks	the	server	for	the	specific	range	with	a	start	offset	and	an	end
offset.	It	can	even	combine	things	and	ask	for	several	ranges	in	the	same	request	by	just
listing	a	bunch	of	pieces	next	to	each	other.	When	a	server	sends	back	multiple	independent
pieces	to	answer	such	a	request,	you	will	get	them	separated	with	mime	boundary	strings
and	it	will	be	up	to	the	user	application	to	handle	that	accordingly.	curl	will	not	further
separate	such	a	response.

However,	a	byte	range	is	only	a	request	to	the	server.	It	does	not	have	to	respect	the	request
and	in	many	cases,	like	when	the	server	automatically	generates	the	contents	on	the	fly
when	it	is	being	asked,	it	will	simply	refuse	to	do	it	and	it	then	instead	respond	with	the	full
contents	anyway.

You	can	make	libcurl	ask	for	a	range	with		CURLOPT_RANGE	.	Like	if	you	want	the	first	200	bytes
out	of	something:

curl_easy_setopt(curl,	CURLOPT_RANGE,	"0-199");

Or	everything	in	the	file	starting	from	index	200:

curl_easy_setopt(curl,	CURLOPT_RANGE,	"200-");

Get	200	bytes	from	index	0	and	200	bytes	from	index	1000:

curl_easy_setopt(curl,	CURLOPT_RANGE,	"0-199,1000-199");

HTTP	ranges

267

Cookies	with	libcurl
By	default	and	by	design,	libcurl	makes	transfers	as	basic	as	possible	and	features	need	to
be	enabled	to	get	used.	One	such	feature	is	HTTP	cookies,	more	known	as	just	plain	and
simply	"cookies".

Cookies	are	name/value	pairs	sent	by	the	server	(using	a		Set-Cookie:		header)	to	be	stored
in	the	client,	and	are	then	supposed	to	get	sent	back	again	in	requests	that	matches	the	host
and	path	requirements	that	were	specified	along	with	the	cookie	when	it	came	from	the
server	(using	the		Cookie:		header).	On	the	modern	web	of	today,	sites	are	known	to
sometimes	use	very	large	numbers	of	cookies.

Cookie	engine
When	you	enable	the	"cookie	engine"	for	a	specific	easy	handle,	it	means	that	it	will	record
incoming	cookies,	store	them	in	the	in-memory	"cookie	store"	that	is	associated	with	the
easy	handle	and	subsequently	send	the	proper	ones	back	if	an	HTTP	request	is	made	that
matches.

There	are	two	ways	to	switch	on	the	cookie	engine:

Enable	cookie	engine	with	reading

Ask	libcurl	to	import	cookies	into	the	easy	handle	from	a	given	file	name	with	the
	CURLOPT_COOKIEFILE		option:

curl_easy_setopt(easy,	CURLOPT_COOKIEFILE,	"cookies.txt");

A	common	trick	is	to	just	specify	a	non-existing	file	name	or	plain	""	to	have	it	just	activate
the	cookie	engine	with	a	blank	cookie	store	to	start	with.

This	option	can	be	set	multiple	times	and	then	each	of	the	given	files	will	be	read.

Enable	cookie	engine	with	writing

Ask	for	received	cookies	to	get	stored	in	a	file	with	the		CURLOPT_COOKIEJAR		option:

curl_easy_setopt(easy,	CURLOPT_COOKIEJAR,	"cookies.txt");

Cookies	with	libcurl

268

when	the	easy	handle	is	closed	later	with		curl_easy_cleanup()	,	all	known	cookies	will	be
written	to	the	given	file.	The	file	format	is	the	well-known	"Netscape	cookie	file"	format	that
browsers	also	once	used.

Setting	custom	cookies
A	simpler	and	more	direct	way	to	just	pass	on	a	set	of	specific	cookies	in	a	request	that
doesn't	add	any	cookies	to	the	cookie	store	and	doesn't	even	activate	the	cookie	engine,	is
to	set	the	set	with	`CURLOPT_COOKIE:':

curl_easy_setopt(easy,	CURLOPT_COOKIE,	"name=daniel;	present=yes;");

The	string	you	set	there	is	the	raw	string	that	would	be	sent	in	the	HTTP	request	and	should
be	in	the	format	of	repeated	sequences	of		NAME=VALUE;		-	including	the	semicolon	separator.

Import	export
The	cookie	in-memory	store	can	hold	a	bunch	of	cookies,	and	libcurl	offers	very	powerful
ways	for	an	application	to	play	with	them.	You	can	set	new	cookies,	you	can	replace	an
existing	cookie	and	you	can	extract	existing	cookies.

Add	a	cookie	to	the	cookie	store

Add	a	new	cookie	to	the	cookie	store	by	simply	passing	it	into	curl	with		CURLOPT_COOKIELIST	
with	a	new	cookie.	The	format	of	the	input	is	a	single	line	in	the	cookie	file	format,	or
formatted	as	a		Set-Cookie:		response	header,	but	we	recommend	the	cookie	file	style:

#define	SEP		"\\t"		/*	Tab	separates	the	fields	*/

char	*my_cookie	=

		"example.com"				/*	Hostname	*/

		SEP	"FALSE"						/*	Include	subdomains	*/

		SEP	"/"										/*	Path	*/

		SEP	"FALSE"						/*	Secure	*/

		SEP	"0"										/*	Expiry	in	epoch	time	format.	0	==	Session	*/

		SEP	"foo"								/*	Name	*/

		SEP	"bar";							/*	Value	*/

curl_easy_setopt(curl,	CURLOPT_COOKIELIST,	my_cookie);

Cookies	with	libcurl

269

If	that	given	cookie	would	match	an	already	existing	cookie	(with	the	same	domain	and	path,
etc.),	it	would	overwrite	the	old	one	with	the	new	contents.

Get	all	cookies	from	the	cookie	store

Sometimes	writing	the	cookie	file	when	you	close	the	handle	isn't	enough	and	then	your
application	can	opt	to	extract	all	the	currently	known	cookies	from	the	store	like	this:

struct	curl_slist	*cookies

curl_easy_getinfo(easy,	CURLINFO_COOKIELIST,	&cookies);

This	returns	a	pointer	to	a	linked	list	of	cookies,	and	each	cookie	is	(again)	specified	as	a
single	line	of	the	cookie	file	format.	The	list	is	allocated	for	you,	so	do	not	forget	to	call
	curl_slist_free_all		when	the	application	is	done	with	the	information.

Cookie	store	commands

If	setting	and	extracting	cookies	isn't	enough,	you	can	also	interfere	with	the	cookie	store	in
more	ways:

Wipe	the	entire	in-memory	storage	clean	with:

curl_easy_setopt(curl,	CURLOPT_COOKIELIST,	"ALL");

Erase	all	session	cookies	(cookies	without	expiry	date)	from	memory:

curl_easy_setopt(curl,	CURLOPT_COOKIELIST,	"SESS");

Force	a	write	of	all	cookies	to	the	file	name	previously	specified	with		CURLOPT_COOKIEJAR	:

curl_easy_setopt(curl,	CURLOPT_COOKIELIST,	"FLUSH");

Force	a	reload	of	cookies	from	the	file	name	previously	specified	with		CURLOPT_COOKIEFILE	:

curl_easy_setopt(curl,	CURLOPT_COOKIELIST,	"RELOAD");

Cookie	file	format

Cookies	with	libcurl

270

The	cookie	file	format	is	text	based	and	stores	one	cookie	per	line.	Lines	that	start	with		#	
are	treated	as	comments.

Each	line	that	each	specifies	a	single	cookie	consists	of	seven	text	fields	separated	with	TAB
characters.

Field Example Meaning

0 example.com Domain	name

1 FALSE Include	subdomains	boolean

2 /foobar/ Path

3 FALSE Set	over	a	secure	transport

4 1462299217 Expires	at	–	seconds	since	Jan	1st	1970,	or	0

5 person Name	of	the	cookie

6 daniel Value	of	the	cookie

Cookies	with	libcurl

271

libcurl	HTTP	download
The	GET	method	is	the	default	method	libcurl	uses	when	a	HTTP	URL	is	requested	and	no
particular	other	method	is	asked	for.	It	asks	the	server	for	a	particular	resource—the
standard	HTTP	download	request:

easy	=	curl_easy_init();

curl_easy_setopt(easy,	CURLOPT_URL,	"http://example.com/");

curl_easy_perform(easy);

Since	options	set	in	an	easy	handle	are	sticky	and	remain	until	changed,	there	may	be	times
when	you	have	asked	for	another	request	method	than	GET	and	then	want	to	switch	back	to
GET	again	for	a	subsequent	request.	For	this	purpose,	there's	the		CURLOPT_HTTPGET		option:

curl_easy_setopt(easy,	CURLOPT_HTTPGET,	1L);

Download	headers	too

A	HTTP	transfer	also	includes	a	set	of	response	headers.	Response	headers	are	metadata
associated	with	the	actual	payload,	called	the	response	body.	All	downloads	will	get	a	set	of
headers	too,	but	when	using	libcurl	you	can	select	whether	you	want	to	have	them
downloaded	(seen)	or	not.

You	can	ask	libcurl	to	pass	on	the	headers	to	the	same	"stream"	as	the	regular	body	is,	by
using		CURLOPT_HEADER	:

easy	=	curl_easy_init();

curl_easy_setopt(easy,	CURLOPT_HEADER,	1L);

curl_easy_setopt(easy,	CURLOPT_URL,	"http://example.com/");

curl_easy_perform(easy);

Or	you	can	opt	to	store	the	headers	in	a	separate	download	file,	by	relying	on	the	default
behaviors	of	the	write	and	header	callbacks:

easy	=	curl_easy_init();

FILE	*file	=	fopen("headers",	"wb");

curl_easy_setopt(easy,	CURLOPT_HEADERDATA,	file);

curl_easy_setopt(easy,	CURLOPT_URL,	"http://example.com/");

curl_easy_perform(easy);

fclose(file);

Download

272

If	you	only	want	to	casually	browse	the	headers,	you	may	even	be	happy	enough	with	just
setting	verbose	mode	while	developing	as	that	will	show	both	outgoing	and	incoming
headers	sent	to	stderr:

curl_easy_setopt(easy,	CURLOPT_VERBOSE,	1L);

Download

273

HTTP	upload
Uploads	over	HTTP	can	be	done	in	many	different	ways	and	it	is	important	to	notice	the
differences.	They	can	use	different	methods,	like	POST	or	PUT,	and	when	using	POST	the
body	formatting	can	differ.

In	addition	to	those	HTTP	differences,	libcurl	offers	different	ways	to	provide	the	data	to
upload.

HTTP	POST

POST	is	typically	the	HTTP	method	to	pass	data	to	a	remote	web	application.	A	very
common	way	to	do	that	in	browsers	is	by	filling	in	a	HTML	form	and	pressing	submit.	It	is	the
standard	way	for	a	HTTP	request	to	pass	on	data	to	the	server.	With	libcurl	you	normally
provide	that	data	as	a	pointer	and	a	length:

curl_easy_setopt(easy,	CURLOPT_POSTFIELDS,	dataptr);

curl_easy_setopt(easy,	CURLOPT_POSTFIELDSIZE,	(long)datalength);

Or	you	tell	libcurl	that	it	is	a	post	but	would	prefer	to	have	libcurl	instead	get	the	data	by
using	the	regular	read	callback:

curl_easy_setopt(easy,	CURLOPT_POST,	1L);

curl_easy_setopt(easy,	CURLOPT_READFUNCTION,	read_callback);

This	"normal"	POST	will	also	set	the	request	header		Content-Type:	application/x-www-form-
urlencoded	.

HTTP	multipart	formposts

A	multipart	formpost	is	still	using	the	same	HTTP	method	POST;	the	difference	is	only	in	the
formatting	of	the	request	body.	A	multipart	formpost	is	basically	a	series	of	separate	"parts",
separated	by	MIME-style	boundary	strings.	There's	no	limit	to	how	many	parts	you	can
send.

Each	such	part	has	a	name,	a	set	of	headers	and	a	few	other	properties.

libcurl	offers	a	convenience	function	for	constructing	such	a	series	of	parts	and	to	send	that
off	to	the	server.		curl_formadd		is	the	function	to	build	a	formpost.	Invoke	it	once	for	each
part,	and	pass	in	arguments	to	it	detailing	the	specifics	and	characteristics	of	that	part.	When

Upload

274

all	parts	you	want	to	send	have	been	added,	you	pass	in	the	handle		curl_formadd		returned
like	this:

curl_easy_setopt(easy,	CURLOPT_HTTPPOST,	formposthandle);

HTTP	PUT

TBD

Upload

275

Bindings
Creative	people	have	written	bindings	or	interfaces	for	various	environments	and
programming	languages.	Using	one	of	these	allows	you	to	take	advantage	of	curl	powers
from	within	your	favorite	language	or	system.	This	is	a	list	of	all	known	interfaces	as	of	this
writing.

The	bindings	listed	below	are	not	part	of	the	curl/libcurl	distribution	archives,	but	must	be
downloaded	and	installed	separately.

Language Site Author(s)

Script	Basic http://scriptbasic.com/ Peter
Verhas

C++ http://curlpp.org/

Jean-
Philippe,
Barrette-
LaPierre

Ch/C++ http://chcurl.sourceforge.net/

Stephen
Nestinger,
Jonathan
Rogado

Cocoa	(BBHTTP) https://github.com/brunodecarvalho/BBHTTP Bruno	de
Carvalho

Cocoa
(CURLHandle) https://github.com/karelia/curlhandle/ Dan	Wood

D http://dlang.org/library/std/net/curl.html Kenneth
Bogert

Dylan http://opendylan.org/ Chris
Double

Eiffel https://room.eiffel.com/library/curl Eiffel
Software

Euphoria http://rays-web.com/eulibcurl.htm Ray	Smith

Falcon http://www.falconpl.org/ Falcon

Gambas http://gambas.sourceforge.net/ Gambas

glib/GTK+ http://atterer.org/glibcurl Richard
Atterer

Guile http://www.lonelycactus.com/guile-curl.html Michael	L.
Gran

Bindings

276

http://scriptbasic.com/
http://curlpp.org/
http://chcurl.sourceforge.net/
https://github.com/brunodecarvalho/BBHTTP
https://github.com/karelia/curlhandle/
http://dlang.org/library/std/net/curl.html
http://opendylan.org/
https://room.eiffel.com/library/curl
http://rays-web.com/eulibcurl.htm
http://www.falconpl.org/
http://gambas.sourceforge.net/
http://atterer.org/glibcurl
http://www.lonelycactus.com/guile-curl.html

Harbour https://github.com/vszakats/harbour-
core/tree/master/contrib/hbcurl

Viktor
Szakáts

Haskell http://hackage.haskell.org/package/curl Galois,	Inc

Java https://github.com/pjlegato/curl-java Paul
Legato

Lua	(luacurl) http://luacurl.luaforge.net/ Alexander
Marinov

Lua-cURL https://github.com/Lua-cURL/Lua-cURLv3

Jürgen
Hötzel,
Alexey
Melnichuk

.NET https://github.com/masroore/CurlSharp

Masroor
Ehsan
Choudhury,
Jeffrey
Phillips

NodeJS https://github.com/JCMais/node-libcurl
Jonathan
Cardoso
Machado

O'Caml https://sourceforge.net/projects/ocurl/ Lars
Nilsson

Pascal/Delphi/Kylix http://curlpas.sourceforge.net/curlpas/ Jeffrey
Pohlmeyer.

Pascal/Delphi/Kylix http://www.tekool.com/opcurl Christophe
Espern.

Perl https://github.com/szbalint/WWW--Curl
Cris	Bailiff
and	Bálint
Szilakszi

PHP https://php.net/curl Sterling
Hughes

Python	(PycURL) https://github.com/pycurl/pycurl Kjetil
Jacobsen

R http://cran.r-project.org/package=curl

Jeroen
Ooms,
Hadley
Wickham,
RStudio

Rexx http://rexxcurl.sourceforge.net/ Mark
Hessling

Ruby	(curb) https://github.com/taf2/curb Ross
Bamford

Kristjan

Bindings

277

https://github.com/vszakats/harbour-core/tree/master/contrib/hbcurl
http://hackage.haskell.org/package/curl
https://github.com/pjlegato/curl-java
http://luacurl.luaforge.net/
https://github.com/Lua-cURL/Lua-cURLv3
https://github.com/masroore/CurlSharp
https://github.com/JCMais/node-libcurl
https://sourceforge.net/projects/ocurl/
http://curlpas.sourceforge.net/curlpas/
http://www.tekool.com/opcurl
https://github.com/szbalint/WWW--Curl
https://php.net/curl
https://github.com/pycurl/pycurl
http://cran.r-project.org/package=curl
http://rexxcurl.sourceforge.net/
https://github.com/taf2/curb

Ruby	(ruby-curl-
multi)

http://curl-multi.rubyforge.org/ Petursson
and	Keith
Rarick

Rust	(curl-rust) https://github.com/carllerche/curl-rust Carl
Lerche

Scheme	Bigloo http://www.metapaper.net/lisovsky/web/curl/ Kirill
Lisovsky

S-Lang http://www.jedsoft.org/slang/modules/curl.html John	E
Davis

Smalltalk http://www.squeaksource.com/CurlPlugin/ Danil
Osipchuk

SP-Forth http://www.forth.org.ru/~ac/lib/lin/curl/ ygrek

Tcl http://mirror.yellow5.com/tclcurl/ Andrés
García

Visual	Basic https://sourceforge.net/projects/libcurl-vb/ Jeffrey
Phillips

wxWidgets http://wxcode.sourceforge.net/components/wxcurl/ Casey
O'Donnell

Xojo https://github.com/charonn0/RB-libcURL Andrew
Lambert

Bindings

278

http://curl-multi.rubyforge.org/
https://github.com/carllerche/curl-rust
http://www.metapaper.net/lisovsky/web/curl/
http://www.jedsoft.org/slang/modules/curl.html
http://www.squeaksource.com/CurlPlugin/
http://www.forth.org.ru/~ac/lib/lin/curl/
http://mirror.yellow5.com/tclcurl/
https://sourceforge.net/projects/libcurl-vb/
http://wxcode.sourceforge.net/components/wxcurl/
https://github.com/charonn0/RB-libcURL

libcurl	internals
libcurl	is	never	finished	and	is	not	just	an	off-the-shelf	product.	It	is	very	much	a	living	project
that	is	improved	and	modified	on	almost	a	daily	basis.	We	depend	on	skilled	and	interested
hackers	to	fix	bugs	and	to	add	features.

This	chapter	is	meant	to	describe	internal	details	to	aid	keen	libcurl	hackers	to	learn	some
basic	concepts	on	how	libcurl	works	internally	and	thus	possibly	where	to	look	for	problems
or	where	to	add	things	when	you	want	to	make	the	library	do	something	new.

Everything	is	multi
TBD

Different	protocols	"hooked	in"
TBD

Everything	is	state	machines
TBD

Name	resolving
TBD

vtls
TBD

libcurl	internals

279

Index

.
.netrc:	Command	line	leakage,	.netrc,	The	.netrc	file	format,	Enable	netrc

/
/etc/hosts:	Host	name	or	address,	Edit	the	hosts	file

<
:	include/curl,	curl	--libcurl,	Header	files

A
--anyauth:	HTTP	authentication

B
-b:	Cookie	engine,	Reading	cookies	from	file,	Writing	cookies	to	file,	New	cookie
session,	curl	cheat	sheet
--basic:	HTTP	authentication
BoringSSL:	Select	TLS	backend,	Build	to	use	a	TLS	library,	OpenSSL,	BoringSSL,
libressl,	Build	curl	with	boringssl,	build	boringssl,	set	up	the	build	tree	to	get	detected	by
curl's	configure,	configure	curl

C
-c:	Writing	cookies	to	file,	curl	cheat	sheet
c-ares:	Name	resolve	tricks	with	c-ares,	c-ares
C89:	Comments,	Building	and	installing
CA:	Verbose	mode,	MITM-proxies,	Available	exit	codes,	Verifying	server	certificates,	CA
store,	CA	store	on	windows,	OCSP	stapling

Index

280

Chrome:	Copy	as	curl,	From	Chrome
clone:	Clone	the	code,	git,	Pull	request,	Web	site	source	code,	build	boringssl
code	of	conduct:	Code	of	conduct
--compressed:	Compression,	Gzipped	transfers,	curl	cheat	sheet
configure:	root,	include/curl,	Handling	different	build	options,	On	Linux	and	Unix-like
systems,	Autotools,	cross-compiling,	Select	TLS	backend,	configure,	OpenSSL,
BoringSSL,	libressl,	GnuTLS,	NSS,	WolfSSL,	axTLS,	mbedTLS,	Secure	Transport,
Schannel,	set	up	the	build	tree	to	get	detected	by	curl's	configure,	configure	curl
--connect-timeout:	Never	spend	more	than	this	to	connect
--connect-to:	Provide	a	replacement	name
Connection	reuse:	Connection	reuse,	Connection	reuse
content-encoding:	Compression,	Transfer	encoding
contribute:	Code	of	conduct,	Contributing,	Pull	request
Contributing:	docs,	Contributing
Cookie	engine:	Cookie	engine,	Writing	cookies	to	file,	Cookie	engine,	Enable	cookie
engine	with	reading,	Enable	cookie	engine	with	writing,	Setting	custom	cookies
Cookies:	docs,	Server	differences,	Change	the	Host:	header,	Not	perfect,	Maintain	state
with	cookies,	HTTP	authentication,	Cookies,	Cookie	engine,	Reading	cookies	from	file,
Writing	cookies	to	file,	New	cookie	session,	libpsl,	Simple	by	default,	more	on	demand,
Available	information,	Cookies	with	libcurl,	Cookie	engine,	Enable	cookie	engine	with
reading,	Enable	cookie	engine	with	writing,	Setting	custom	cookies,	Import	export,	Get
all	cookies	from	the	cookie	store,	Cookie	store	commands
copyright:	License,	Copyright
curl-announce:	curl-announce,	Vulnerability	handling
curl-library:	curl-users,	curl-library,	Make	a	patch	for	the	mailing	list,	Vulnerability
handling
curl-users:	curl-users,	Vulnerability	handling
CURLE_ABORTED_BY_CALLBACK:	Progress	callback
CURLMOPT_SOCKETFUNCTION:	socket_callback
CURLMOPT_TIMERFUNCTION:	timer_callback
CURLOPT_CLOSEOCKETFUNCTION:	Socket	close	callback
CURLOPT_COOKIE:	Setting	custom	cookies
CURLOPT_COOKIEFILE:	Enable	cookie	engine	with	reading
CURLOPT_COOKIEJAR:	Enable	cookie	engine	with	writing
CURLOPT_COOKIELIST:	Add	a	cookie	to	the	cookie	store,	Cookie	store	commands
CURLOPT_CUSTOMREQUEST:	Request	method
CURLOPT_DEBUGDATA:	Debug	callback,	Trace	everything
CURLOPT_DEBUGFUNCTION:	Debug	callback,	Trace	everything
CURLOPT_ERRORBUFFER:	curl	--libcurl,	CURLcode	return	code
CURLOPT_FAILONERROR:	About	HTTP	response	code	"errors"

Index

281

CURLOPT_HEADER:	Write	callback,	Download	headers	too
CURLOPT_HEADERDATA:	Header	callback,	curl	--libcurl,	Download	headers	too
CURLOPT_HEADERFUNCTION:	Header	callback,	curl	--libcurl
CURLOPT_HTTPGET:	libcurl	HTTP	download
CURLOPT_HTTPHEADER:	Add	a	header,	Change	a	header,	Remove	a	header,
Provide	a	header	without	contents
CURLOPT_HTTPPOST:	HTTP	multipart	formposts
CURLOPT_MAXFILE_LARGE:	Setting	numerical	options
CURLOPT_MAXREDIRS:	curl	--libcurl
CURLOPT_NOBODY:	Request	method
CURLOPT_NOPROGRESS:	Progress	callback,	curl	--libcurl
CURLOPT_OPENSOCKETDATA:	Provide	a	file	descriptor
CURLOPT_OPENSOCKETFUNCTION:	Provide	a	file	descriptor
CURLOPT_POST:	HTTP	POST
CURLOPT_POSTFIELDS:	Request	method,	Customize	HTTP	request	headers,	HTTP
POST
CURLOPT_POSTFIELDSIZE:	HTTP	POST
CURLOPT_POSTREDIR:	Decide	what	method	to	use	in	redirects
CURLOPT_PROGRESSFUNCTION:	Progress	callback
CURLOPT_PROXY:	Proxy	types
CURLOPT_PROXYPORT:	Proxy	types
CURLOPT_PROXYTYPE:	Proxy	types
CURLOPT_READDATA:	Read	callback,	curl	--libcurl
CURLOPT_READFUNCTION:	Read	callback,	curl	--libcurl,	HTTP	POST
CURLOPT_SEEKDATA:	curl	--libcurl
CURLOPT_SEEKFUNCTION:	curl	--libcurl
CURLOPT_SOCKOPTDATA:	sockopt	callback
CURLOPT_SOCKOPTFUNCTION:	sockopt	callback
CURLOPT_SSH_KNOWNHOSTS:	curl	--libcurl
CURLOPT_STDERR:	curl	--libcurl,	Verbose	operations
CURLOPT_TCP_KEEPALIVE:	curl	--libcurl
CURLOPT_TIMEOUT:	Setting	numerical	options
CURLOPT_UPLOAD:	Request	method
CURLOPT_URL:	Easy	handle,	curl	--libcurl,	Set	handle	options,	Request	method,
libcurl	HTTP	download,	Download	headers	too
CURLOPT_USERAGENT:	curl	--libcurl
CURLOPT_VERBOSE:	Verbose	operations,	Trace	everything,	Download	headers	too
CURLOPT_WRITEDATA:	Write	callback,	curl	--libcurl
CURLOPT_WRITEFUNCTION:	Write	callback,	curl	--libcurl
CURLOPT_XFERINFODATA:	Progress	callback

Index

282

CURLOPT_XFERINFOFUNCTION:	Progress	callback
curl_easy_cleanup:	easy	handle,	curl	--libcurl,	Enable	cookie	engine	with	writing
curl_easy_init:	Easy	handle,	curl	--libcurl,	libcurl	HTTP	download,	Download	headers
too
curl_easy_perform:	Driving	with	the	easy	interface,	Easy	API	pool,	curl	--libcurl,	Add	a
header,	Change	a	header,	Remove	a	header,	Provide	a	header	without	contents,	libcurl
HTTP	download,	Download	headers	too
curl_easy_reset:	Easy	handle
curl_easy_setopt:	docs/libcurl/opts,	Easy	handle,	Write	callback,	Read	callback,
Progress	callback,	Header	callback,	Debug	callback,	sockopt	callback,	Provide	a	file
descriptor,	Socket	close	callback,	curl	--libcurl,	Set	handle	options,	Setting	numerical
options,	Get	handle	options,	CURLcode	return	code,	Verbose	operations,	Add	a	header,
Change	a	header,	Remove	a	header,	Provide	a	header	without	contents,	HTTP	ranges,
Enable	cookie	engine	with	reading,	Enable	cookie	engine	with	writing,	Setting	custom
cookies,	Add	a	cookie	to	the	cookie	store,	Cookie	store	commands,	libcurl	HTTP
download,	Download	headers	too,	HTTP	POST,	HTTP	multipart	formposts
curl_global_cleanup:	Global	initialization
curl_global_init:	Global	initialization
CURL_MAX_WRITE_SIZE:	Write	callback
curl_multi_add_handle:	Driving	with	the	multi	interface,	Many	easy	handles
curl_multi_cleanup:	Multi	API
curl_multi_fdset:	Driving	with	the	multi	interface
curl_multi_info_read:	When	is	a	single	transfer	done?,	When	is	it	done?,	Multi	API
curl_multi_init:	Driving	with	the	multi	interface
curl_multi_remove_handle:	Driving	with	the	multi	interface,	Many	easy	handles,	Multi
API
curl_multi_setopt:	docs/libcurl/opts,	Driving	with	the	multi	interface,	socket_callback,
timer_callback
curl_multi_socket_action:	socket_callback,	timer_callback,	How	to	start	everything,
When	is	it	done?
curl_multi_timeout:	Driving	with	the	multi	interface
curl_multi_wait:	Driving	with	the	multi	interface
curl_off_t:	Progress	callback,	Setting	numerical	options
CURL_SOCKET_TIMEOUT:	timer_callback,	How	to	start	everything
curl_version_info:	Which	libcurl	version	runs

D
-d:	Arguments	to	options,	Arguments	with	spaces,	Separate	options	per	URL,	POST,

Index

283

HTTP	methods,	HTTP	POST,	Content-Type,	POSTing	binary,	Convert	that	to	a	GET,
Expect	100-continue,	Chunked	encoded	POSTs,	Hidden	form	fields,	-d	vs	-F,	HTML
web	forms,	POST	outside	of	HTML,	PUT,	curl	cheat	sheet
--data:	Arguments	to	options,	Separate	options	per	URL,	POST,	HTTP	POST,	URL
encoding
Debug	callback:	Debug	callback,	Verbose	operations
development:	Project	communication,	curl-users,	curl-library,	Reporting	bugs,	Problems
must	be	known	to	get	fixed,	The	development	team,	Future,	Development,	Source	code
on	github,	Who	decides	what	goes	in?,	SSL	and	TLS	versions,	Figure	out	what	a
browser	sends,	apt-get,	yum,	Which	libcurl	version	runs

E
environment	variables:	Default	config	file,	Proxy	environment	variables
etiquette:	Mailing	list	etiquette
event-driven:	Driving	with	the	"multi_socket"	interface

F
-F:	multipart	formpost,	Not	perfect,	HTTP	methods,	Sending	such	a	form	with	curl,
Content-Type,	-d	vs	-F,	HTML	web	forms,	curl	cheat	sheet
Firefox:	lib/vtls,	Discover	your	proxy,	Copy	as	curl,	From	Firefox,	On	Firefox,	without
using	the	devtools
Fragment:	Fragment
--ftp-method:	multicwd,	nocwd,	singlecwd
future:	Project	communication,	Future,	docs,	curl-security@haxx.se,	What	other
protocols	are	there?,	HTTPS	to	proxy,	"Not	used",	Cookies,	API	compatibility

G
git:	Daily	snapshots,	Clone	the	code,	root,	include/curl,	scripts,	git,	Pull	request,	Make	a
patch	for	the	mailing	list,	git	commit	style,	Who	decides	what	goes	in?,	Web	site	source
code,	Building	the	web,	git	vs	tarballs,	build	boringssl
Globbing:	URL	globbing,	Output	variables	for	globbing
GnuTLS:	OCSP	stapling,	Build	to	use	a	TLS	library,	GnuTLS,	Proxy	types
Gopher:	How	it	started,	What	protocols	does	curl	support?,	GOPHER,	Supported
protocols

Index

284

H
--header:	Server	differences
Header	callback:	Header	callback,	HTTP	responses
Host::	Verbose	mode,	--trace	and	--trace-ascii,	--trace-time,	Change	the	Host:	header,
HTTP	protocol	basics,	The	URL	converted	to	a	request,	The	HTTP	this	generates,
Customize	HTTP	request	headers,	Change	a	header
HTTP	ranges:	HTTP	ranges,	HTTP	ranges
HTTP	redirects:	Short	options,	Long	options,	Available	exit	codes,	HTTP	redirects,	Tell
curl	to	follow	redirects,	Decide	what	method	to	use	in	redirects,	Non-HTTP	redirects
HTTP/1.1:	HTTP,	Verbose	mode,	--trace	and	--trace-ascii,	--trace-time,	HTTP/2,	HTTP
protocol	basics,	HTTP	versions,	The	HTTP	this	generates,	GET	or	POST?,	Request
method,	Customize	HTTP	request	headers,	HTTP	versions
HTTP/2:	docs,	HTTP,	HTTP/2,	Available	exit	codes,	HTTP	versions,	GET	or	POST?,
nghttp2,	HTTP	versions
HttpGet:	How	it	started

I
IDN:	libidn2
Indentation:	Indentation,	Open	brace	on	the	same	line
IPv4:	Host	name	or	address,	Port	number,	Available	--write-out	variables
IPv6:	Host	name	or	address,	Port	number,	URL	globbing,	Available	--write-out	variables

J
JavaScript:	Client	differences,	PAC,	JavaScript	and	forms,	JavaScript	redirects
json:	Arguments	with	spaces,	Content-Type,	POST	outside	of	HTML

K
-K:	Command	lines,	quotes	and	aliases,	Config	file
keep-alive:	Keep	connections	alive
--keepalive-time:	Keep	alive,	Keep	connections	alive

L

Index

285

-L:	Available	--write-out	variables,	Tell	curl	to	follow	redirects,	Cookie	engine,	Reading
cookies	from	file,	curl	cheat	sheet
--libcurl:	curl	--libcurl
libcurl	version:	Available	exit	codes,	The	latest	version?,	Which	libcurl	version,	Which
libcurl	version	runs
libidn2:	libidn2
libmetalink:	libmetalink
libpsl:	libpsl
libressl:	Select	TLS	backend,	Build	to	use	a	TLS	library,	OpenSSL,	BoringSSL,	libressl
librtmp:	librtmp
libssh2:	libssh2
license:	Finding	users,	Famous	users,	License,	root
--limit-rate:	Rate	limiting
--location:	Long	options,	Separate	options	per	URL,	Config	file,	Tell	curl	to	follow
redirects

M
--max-filesize:	Maximum	filesize
--max-time:	Retrying	failed	attempts,	Maximum	time	allowed	to	spend
--metalink:	Metalink
Metalink:	Metalink
MIT:	License
MITM-proxies:	MITM-proxies
multi-threading:	libcurl	multi-threading

N
--negotiate:	Network	leakage,	HTTP	authentication
--netrc-file:	Enable	netrc
--netrc-optional:	Enable	netrc
nghttp2:	nghttp2
NSS:	OCSP	stapling,	yum,	Build	to	use	a	TLS	library,	NSS,	Proxy	types
--ntlm:	Network	leakage,	HTTP	authentication

O
-O:	Many	options	and	URLs,	Numerical	ranges,	Alphabetical	ranges,	A	list,

Index

286

Combinations,	Output	variables	for	globbing,	Download	to	a	file	named	by	the	URL,	Get
the	target	file	name	from	the	server,	Shell	redirects,	Multiple	downloads,	Use	the	URL's
file	name	part	for	all	URLs,	Resuming	and	ranges,	curl	cheat	sheet
openldap:	openldap
OpenSSL:	lib/vtls,	OCSP	stapling,	Select	TLS	backend,	Build	to	use	a	TLS	library,
configure,	OpenSSL,	BoringSSL,	libressl,	Proxy	types,	Available	information

P
PAC:	PAC
port	number:	Connects	to	"port	numbers",	Port	number,	Available	--write-out	variables,
Provide	a	replacement	name,	Local	port	number,	HTTP,	HTTP	proxy	tunneling,
Available	exit	codes,	The	URL	converted	to	a	request,	Proxies,	Proxy	types,	Post
transfer	info
--post301:	Decide	what	method	to	use	in	redirects
--post302:	Decide	what	method	to	use	in	redirects
--post303:	Decide	what	method	to	use	in	redirects
Progress	callback:	timer_callback,	Progress	callback
--proxy:	HTTP,	HTTP	authentication
proxy:	How	it	started,	Available	--write-out	variables,	Intermediaries'	fiddlings,	Proxies,
Discover	your	proxy,	PAC,	Proxy	type,	HTTP,	HTTPS	and	proxy,	MITM-proxies,	Non-
HTTP	protocols	over	an	HTTP	proxy,	HTTP	proxy	tunneling,	SOCKS	types,	Proxy
authentication,	HTTPS	to	proxy,	Proxy	environment	variables,	Proxy	headers,	Available
exit	codes,	CONNECT	response	codes,	Pass	on	transfer	encoding,	HTTP
authentication,	Proxies,	Proxy	types,	Local	or	proxy	name	lookup,	HTTP	proxy,	HTTPS
proxy,	Proxy	authentication,	Available	information,	HTTP	proxy
--proxy-user:	Proxy	authentication,	HTTP	authentication
--proxy1.0:	HTTP	proxy	tunneling
--proxytunnel:	HTTP	proxy	tunneling

R
ranges:	Numerical	ranges,	Alphabetical	ranges,	Combinations,	Resuming	and	ranges,
HTTP	ranges,	Provide	a	file	descriptor,	HTTP	response	code,	About	HTTP	response
code	"errors",	HTTP	ranges
Read	callback:	Read	callback,	HTTP	POST
redirects:	Long	options,	Separate	options	per	URL,	Config	file,	Available	--write-out
variables,	Download	to	a	file	named	by	the	URL,	Shell	redirects,	Provide	a	custom	IP
address	for	a	name,	Provide	a	replacement	name,	Available	exit	codes,	Follow	redirects

Index

287

automatically,	HTTP	redirects,	Permanent	and	temporary,	Tell	curl	to	follow	redirects,
GET	or	POST?,	Decide	what	method	to	use	in	redirects,	Non-HTTP	redirects,	HTML
redirects,	JavaScript	redirects,	Available	information
RELEASE-NOTES:	scripts
releases:	1.	The	cURL	project),	curl-announce,	Releases,	scripts,	Verbose	mode,	Which
libcurl	version
--remote-name-all:	Use	the	URL's	file	name	part	for	all	URLs
repository:	Releases,	Daily	snapshots,	Source	code	on	github,	Hosting	and	download,
root,	include/curl,	scripts,	What	to	add,	Pull	request,	Who	decides	what	goes	in?,	Web
site	source	code,	Building	the	web,	Installing	from	your	package	repository,	git	vs
tarballs
--resolve:	Provide	a	custom	IP	address	for	a	name,	Provide	a	replacement	name
RTMP:	What	protocols	does	curl	support?,	RTMP,	Supported	protocols,	librtmp
RTSP:	What	protocols	does	curl	support?,	RTSP,	Supported	protocols,	RTSP	interleave
callback,	Available	information

S
Schannel:	CA	store	on	windows,	Build	to	use	a	TLS	library,	Schannel
Scheme:	Connects	to	"port	numbers",	FILE,	Scheme,	The	scheme	separator,	Without
scheme,	Name	and	password,	Proxy	type,	SOCKS	types,	Proxy	authentication,
Available	exit	codes,	librtmp,	Proxy	types,	Available	information,	Which	libcurl	version,
Bindings
SCP:	What	protocols	does	curl	support?,	SCP,	Supported	protocols,	Protocols	allowing
upload,	Available	exit	codes,	SCP	and	SFTP,	URLs,	Known	hosts,	libssh2
security:	curl-announce,	Security,	Past	security	problems,	Trust,	docs,	Reporting
vulnerabilities,	Vulnerability	handling,	TLS,	How	much	do	protocols	change?,	FTPS,
TLS,	Ciphers,	Enable	TLS,	How	to	HTTP	with	curl
SFTP:	What	protocols	does	curl	support?,	About	adhering	to	standards	and	who's	right,
SFTP,	Supported	protocols,	--trace	and	--trace-ascii,	Protocols	allowing	upload,
Available	exit	codes,	SCP	and	SFTP,	URLs,	Known	hosts,	libssh2
--show-error:	Silence
--silent:	The	progress	meter,	Silence,	Error	message
SMTP:	What	protocols	does	curl	support?,	SMTP,	SMTPS,	Without	scheme,	Supported
protocols,	Verbose	mode,	Protocols	allowing	upload,	SMTP	uploads,	Available	exit
codes,	SMTP,	Secure	mail	transfer,	The	SMTP	URL,	Enable	TLS
SMTPS:	What	protocols	does	curl	support?,	SMTPS,	Supported	protocols,	Protocols
allowing	upload,	Enable	TLS,	Build	to	use	a	TLS	library
snapshots:	Daily	snapshots,	root

Index

288

SNI:	Change	the	Host:	header,	Provide	a	custom	IP	address	for	a	name
--socks4:	SOCKS	types
--socks4a:	SOCKS	types
--socks5:	SOCKS	types
--socks5-hostname:	SOCKS	types
--speed-limit:	Transfer	speeds	slower	than	this	means	exit
--speed-time:	Transfer	speeds	slower	than	this	means	exit
SSH:	SCP,	SFTP,	Available	exit	codes,	SCP	and	SFTP,	Known	hosts,	SSH	key
callback,	Trace	everything
SSL	context	callback:	SSL	context	callback

T
-T:	PUT,	FTP	uploads,	SMTP	uploads,	Uploading	with	FTP,	HTTP	methods,	PUT,	curl
cheat	sheet
TELNET:	What	protocols	does	curl	support?,	TELNET,	Supported	protocols,	Available
exit	codes,	TELNET
testing:	What	does	curl	do?,	Reporting	bugs,	Testing,	Handling	different	build	options,
Contributing,	About	HTTP	response	code	"errors"
TLS:	lib/vtls,	docs,	Handling	different	build	options,	TLS,	Transfer	data,	How	much	do
protocols	change?,	Connection	reuse,	Verbose	mode,	Change	the	Host:	header,	MITM-
proxies,	Available	exit	codes,	SCP	and	SFTP,	Known	hosts,	TLS,	Ciphers,	Enable	TLS,
SSL	and	TLS	versions,	Verifying	server	certificates,	CA	store,	CA	store	on	windows,
Certificate	pinning,	OCSP	stapling,	Client	certificates,	TLS	auth,	Different	TLS
backends,	How	to	HTTP	with	curl,	The	URL	converted	to	a	request,	Figure	out	what	a
browser	sends,	apt-get,	yum,	Select	TLS	backend,	TLS	libraries,	Build	to	use	a	TLS
library,	Proxy	types,	Available	information,	Trace	everything
TODO:	Suggestions
--tr-encoding:	Compression,	Transfer	encoding
--trace:	--trace	and	--trace-ascii,	--trace-time
--trace-ascii:	--trace	and	--trace-ascii,	--trace-time,	Server	differences,	curl	cheat	sheet
--trace-time:	--trace-time
transfer-encoding:	Pass	on	transfer	encoding,	Chunked	encoded	POSTs

U
-U:	Proxy	authentication
-u:	Passwords	and	snooping,	Command	line	leakage,	Authentication,	URLs,	HTTP
authentication,	curl	cheat	sheet

Index

289

URL	Globbing:	URL	globbing

V
--verbose:	Long	options,	Verbose	mode,	--trace-time
Vulnerability:	Vulnerability	handling

W
Write	callback:	Write	callback,	HTTP	responses
--write-out:	--write-out,	Available	--write-out	variables,	HTTP	response	codes,
CONNECT	response	codes

X
-x:	HTTP,	HTTPS	and	proxy,	Non-HTTP	protocols	over	an	HTTP	proxy,	HTTP	proxy
tunneling,	SOCKS	types,	Proxy	authentication,	Proxy	environment	variables,	curl	cheat
sheet
-X:	Request	method,	PUT,	curl	cheat	sheet

Z
zlib:	zlib

Index

290

	Introduction
	How to read this book
	The cURL project
	How it started
	The name
	What does curl do?
	Project communication
	Mailing list etiquette
	Mailing lists
	Reporting bugs
	Releases
	Security
	Trust
	The development team
	Users of curl
	Future

	Open Source
	License
	Copyright and Legal
	Code of Conduct
	Development

	The source code
	Code layout
	Handling build options
	Code style
	Contributing
	Reporting vulnerabilities
	Web site

	Network and protocols
	Networking simplified
	Protocols
	curl protocols

	Command line basics
	Command line options
	Options depend on version
	URLs
	URL globbing
	List options
	Config file
	Passwords
	Progress meter

	Using curl
	Verbose
	Persistent connections
	Downloads
	Uploads
	Connections
	Timeouts
	.netrc
	Proxies
	Exit status
	FTP
	Two connections
	Directory traversing
	Advanced FTP use

	SCP and SFTP
	IMAP and POP3
	SMTP
	TELNET
	TLS
	Debug
	Copy as curl
	curl examples

	How to HTTP with curl
	Protocol basics
	Responses
	Authentication
	Ranges
	HTTP versions
	HTTP POST
	Multipart formposts
	-d vs -F
	Redirects
	Modify the HTTP request
	HTTP PUT
	Cookies
	HTTP/2
	HTTP cheat sheet

	Building and installing
	Installing prebuilt binaries
	Build from source
	Dependencies
	TLS libraries
	BoringSSL

	libcurl basics
	Easy handle
	Drive transfers
	Drive with easy
	Drive with multi
	Drive with multi_socket

	Connection reuse
	Callbacks
	Write data
	Read data
	Progress information
	Header data
	Debug
	sockopt
	SSL context
	Seek and ioctl
	Network data conversion
	Opensocket and closesocket
	SSH key
	RTSP interleaved data
	FTP matching

	Cleanup
	Proxies
	Post transfer info
	API compatibility
	--libcurl
	Header files
	Global initialization
	multi-threading
	curl easy options
	CURLcode return codes
	Verbose operations
	libcurl examples

	HTTP with libcurl
	HTTP responses
	HTTP requests
	HTTP versions
	HTTP ranges
	Cookies with libcurl
	Download
	Upload

	Bindings
	libcurl internals
	Index

